Suppr超能文献

DNA 编码化学库筛选的富集度定量比较。

Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections.

机构信息

FORMA Therapeutics Inc. , 500 Arsenal Street, Suite 100 , Watertown , Massachusetts 02472 , United States.

出版信息

ACS Comb Sci. 2019 Feb 11;21(2):75-82. doi: 10.1021/acscombsci.8b00116. Epub 2019 Jan 23.

Abstract

DNA-encoded chemical libraries (DELs) provide a high-throughput and cost-effective route for screening billions of unique molecules for binding affinity for diverse protein targets. Identifying candidate compounds from these libraries involves affinity selection, DNA sequencing, and measuring enrichment in a sample pool of DNA barcodes. Successful detection of potent binders is affected by many factors, including selection parameters, chemical yields, library amplification, sequencing depth, sequencing errors, library sizes, and the chosen enrichment metric. To date, there has not been a clear consensus about how enrichment from DEL selections should be measured or reported. We propose a normalized  z-score enrichment metric using a binomial distribution model that satisfies important criteria that are relevant for analysis of DEL selection data. The introduced metric is robust with respect to library diversity and sampling and allows for quantitative comparisons of enrichment of n-synthons from parallel DEL selections. These features enable a comparative enrichment analysis strategy that can provide valuable information about hit compounds in early stage drug discovery.

摘要

DNA 编码化合物库 (DEL) 为筛选数十亿种具有不同蛋白质靶标结合亲和力的独特分子提供了高通量且经济有效的途径。从这些文库中鉴定候选化合物涉及亲和力选择、DNA 测序和在 DNA 条码样品池中测量富集度。从 DEL 选择中成功检测到有效结合物受到许多因素的影响,包括选择参数、化学产率、文库扩增、测序深度、测序错误、文库大小和所选富集指标。迄今为止,对于如何衡量或报告 DEL 选择的富集,尚未达成明确共识。我们提出了一种使用二项式分布模型的归一化 z 分数富集度量标准,该模型满足与 DEL 选择数据分析相关的重要标准。该指标具有库多样性和采样的稳健性,并允许对来自平行 DEL 选择的 n-合成物的富集进行定量比较。这些功能使比较富集分析策略成为可能,该策略可以提供有关早期药物发现中命中化合物的有价值信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd5/6372980/f9b148162812/co-2018-001163_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验