Suppr超能文献

IPSIM-Web,一个用于推广定性聚合层次网络模型以预测植物病害风险的在线资源:在小麦条锈病上的应用。

IPSIM-Web, An Online Resource for Promoting Qualitative Aggregative Hierarchical Network Models to Predict Plant Disease Risk: Application to Brown Rust on Wheat.

机构信息

AGIR, Université Toulouse, INPT-Purpan, INRA, F-31320 Castanet-Tolosan, France.

INRA AgroParisTech, UMR ECOSYS, F-78850 Thiverval-Grignon, France.

出版信息

Plant Dis. 2018 Mar;102(3):488-499. doi: 10.1094/PDIS-12-16-1816-SR. Epub 2017 Nov 21.

Abstract

A qualitative pest modeling platform, named Injury Profile Simulator (IPSIM), provides a tool to design aggregative hierarchical network models to predict the risk of pest injuries, including diseases, on a given crop based on variables related to cropping practices as well as soil and weather environment at the field level. The IPSIM platform enables modelers to combine data from various sources (literature, survey, experiments, and so on), expert knowledge, and simulation to build a network-based model. The overall structure of the platform is fully described at the IPSIM-Web website ( www6.inra.fr/ipsim ). A new module called IPSIM-Wheat-brown rust is reported in this article as an example of how to use the system to build and test the predictive quality of a prediction model. Model performance was evaluated for a dataset comprising 1,788 disease observations at 13 French cereal-growing regions over 15 years. Accuracy of the predictions was 85% and the agreement with actual values was 0.66 based on Cohen's κ. The new model provides risk information for farmers and agronomists to make scientifically sound tactical (within-season) decisions. In addition, the model may be of use for ex post diagnoses of diseases in commercial fields. The limitations of the model such as low precision and threshold effects as well as the benefits, including the integration of different sources of information, transparency, flexibility, and a user-friendly interface, are discussed.

摘要

一个名为 Injury Profile Simulator(IPSIM)的定性害虫建模平台提供了一种工具,可用于设计聚合层次网络模型,根据与种植实践以及田间土壤和天气环境相关的变量,预测给定作物上害虫伤害(包括疾病)的风险。IPSIM 平台使建模人员能够结合来自各种来源的数据(文献、调查、实验等)、专家知识和模拟来构建基于网络的模型。该平台的整体结构在 IPSIM-Web 网站(www6.inra.fr/ipsim)上进行了全面描述。本文报道了一个名为 IPSIM-Wheat-brown rust 的新模块,作为如何使用该系统构建和测试预测模型预测质量的示例。该模型使用了 15 年来法国 13 个谷物种植地区的 1788 个疾病观测数据集进行了评估。预测的准确率为 85%,基于 Cohen 的 κ,实际值的一致性为 0.66。该新模型为农民和农学家提供风险信息,以做出科学合理的战术(季节性内)决策。此外,该模型可用于对商业领域的疾病进行事后诊断。讨论了模型的局限性,如精度低和阈值效应,以及其优势,包括整合不同来源的信息、透明度、灵活性和用户友好的界面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验