Luan Jing, Huang Lirong, Ling Yonghong, Liu Wenbing, Ba Chunfa, Li Shuang, Min Li
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, 430074, China.
Department of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang, 414000, China.
Sci Rep. 2019 Jan 23;9(1):361. doi: 10.1038/s41598-018-36595-7.
Combining two or several functionalities into a single metadevice is of significant importance and attracts growing interest in recent years. We here introduce the concept of modularization design in dual-wavelength multifunctional metadevice, which is composed of a lower metasurface and an upper metasurface with an indium-tin-oxide (ITO) layer. Benefiting from the fact that ITO holds high infrared (IR) reflection while transparence at visible wavelengths, the metadevice can work in reflection and transmission modes at two very distinct wavelengths, one is 2365 nm in the IR band and the other 650 nm in the visible range. More interestingly and importantly, the two metasurface layers with different functionalities are easy to flexibly integrate into a series of dual-wavelength multifunctional metadevices, with negligible interaction between them and no need of re-designing or re-optimizing their structure parameters. Based on modularization design and functional integration, four kinds of dual-wavelength multifunctional metadevices are demonstrated, which can perform reflective deflection/focusing at 2365 nm and transmissive deflection/focusing at 650 nm. We believe our work may open a straight-forward and flexible way in designing multi-wavelength multifunctional metadevices and photonic integrated devices.
将两种或多种功能集成到单个超材料器件中具有重要意义,并且近年来引起了越来越多的关注。我们在此介绍双波长多功能超材料器件中的模块化设计概念,该器件由一个下部超表面和一个带有氧化铟锡(ITO)层的上部超表面组成。得益于ITO在红外(IR)波段具有高反射率而在可见光波长下具有透明度这一事实,该超材料器件可以在两个截然不同的波长下以反射和透射模式工作,一个是红外波段的2365 nm,另一个是可见光范围内的650 nm。更有趣且重要的是,具有不同功能的两个超表面层易于灵活集成到一系列双波长多功能超材料器件中,它们之间的相互作用可忽略不计,并且无需重新设计或重新优化其结构参数。基于模块化设计和功能集成,展示了四种双波长多功能超材料器件,它们可以在2365 nm处执行反射偏转/聚焦,在650 nm处执行透射偏转/聚焦。我们相信我们的工作可能会为设计多波长多功能超材料器件和光子集成器件开辟一条直接且灵活的途径。