Suppr超能文献

利用遥感热数据预测波兰波兹南欧洲赤松的花期。

Predicting the onset of Betula pendula flowering in Poznań (Poland) using remote sensing thermal data.

机构信息

Adam Mickiewicz University, Faculty of Biology, Laboratory of Biological Spatial Information, 61-614 Poznań, Umultowska 89, Poland.

Adam Mickiewicz University, Faculty of Biology, Laboratory of Aeropalynology, 61-614 Poznań, Umultowska 89, Poland.

出版信息

Sci Total Environ. 2019 Mar 25;658:1485-1499. doi: 10.1016/j.scitotenv.2018.12.295. Epub 2018 Dec 21.

Abstract

Due to the urban heat island effect, the time of plant pollination might markedly vary within the area of a city. However, existing pollen forecasts do not reflect the spatial variations in the pollen release time within a heterogeneous urban environment. The main objective of this study was to model the spatial pattern of flowering onset (and thus the moment of pollen release) in silver birch (Betula pendula Roth.) in Poznań (Western Poland) using land surface temperature (LST) data and in situ phenological observations. The onset of silver birch flowering was observed at 34 urban and rural sites (973 trees) in Poznań from 2012 to 2014. Forty-four thermal variables were retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) data. To predict the spatio-temporal distribution of B. pendula flowering onset dates in a city, the ordinary and partial least squares, support vector machine and random forest regression models were applied. The models' performance was examined by an internal repeated k-fold cross-validation and external validation with archival phenological data (2010). Birch flowering began significantly earlier in the urban sites compared to the rural sites (from -1.4 days in 2013, to -4.1 days in 2012). The maximum March LST difference between the urban and rural sites reached 2.4 °C in 2013 and 4.5 °C in 2012. The random forest model performed best at validation stage, i.e. the root mean square error between the predicted and observed onset dates was 1.461 days, and the determination coefficient was 0.829. A calibrated model for predicting the timing of flowering in a heterogeneous city area is an important step in developing a fine-scale forecasting system that can directly estimate pollen exposure in places where allergy sufferers live. Importantly, by incorporating only pre-flowering thermal data into the model, location-specific allergy forecasts can be delivered to the public before the actual flowering time.

摘要

由于城市热岛效应,同一城市范围内植物传粉的时间可能会发生显著变化。然而,现有的花粉预测并不能反映异质城市环境中花粉释放时间的空间变化。本研究的主要目的是利用地表温度(LST)数据和实地物候观测,对波兰波兹南(西部)银桦(Betula pendula Roth.)开花起始时间(即花粉释放时间)的空间模式进行建模。2012 年至 2014 年,在波兹南的 34 个城市和农村站点(973 棵树)观察到银桦开花。从 MODerate Resolution Imaging Spectroradiometer(MODIS)数据中提取了 44 个热变量。为了预测城市中银桦开花起始日期的时空分布,应用了普通和偏最小二乘、支持向量机和随机森林回归模型。通过内部重复 k 折交叉验证和与档案物候数据(2010 年)的外部验证来检验模型的性能。与农村站点相比,城市站点的桦树开花时间明显提前(2013 年提前-1.4 天,2012 年提前-4.1 天)。2013 年和 2012 年,城市和农村站点之间 3 月最大 LST 差异分别达到 2.4°C 和 4.5°C。在验证阶段,随机森林模型表现最佳,即预测和观测起始日期之间的均方根误差为 1.461 天,决定系数为 0.829。在异质城市区域中预测开花时间的校准模型是开发精细尺度预测系统的重要步骤,该系统可以直接估计过敏患者居住场所的花粉暴露情况。重要的是,通过仅将开花前的热数据纳入模型,可以在实际开花时间之前向公众提供特定地点的过敏预报。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验