Suppr超能文献

髓母细胞瘤关键基因和通路作为治疗靶点的生物信息学分析

Bioinformatics Analysis of Key Genes and Pathways for Medulloblastoma as a Therapeutic Target.

作者信息

Shaabanpour Aghamaleki Fateme, Mollashahi Behrouz, Aghamohammadi Nika, Rostami Nematollah, Mazloumi Zeinab, Mirzaei Hamidreza, Moradi Afshin, Sheikhpour Mojgan, Movafagh Abolfazl

机构信息

Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email:

出版信息

Asian Pac J Cancer Prev. 2019 Jan 25;20(1):221-227. doi: 10.31557/APJCP.2019.20.1.221.

Abstract

Introduction: One of the major challenges in cancer treatment is the lack of specific and accurate treatment in cancer. Data analysis can help to understand the underlying molecular mechanism that leads to better treatment. Increasing availability and reliability of DNA microarray data leads to increase the use of these data in a variety of cancers. This study aimed at applying and evaluating microarray data analyzing, identification of important pathways and gene network for medulloblastoma patients to improve treatment approaches especially target therapy. Methods: In the current study, Microarray gene expression data (GSE50161) were extracted from Geo datasets and then analyzed by the affylmGUI package to predict and investigate upregulated and downregulated genes in medulloblastoma. Then, the important pathways were determined by using software and gene enrichment analyses. Pathways visualization and network analyses were performed by Cytoscape. Results: A total number of 249 differentially expressed genes (DEGs) were identified in medulloblastoma compared to normal samples. Cell cycle, p53, and FoxO signaling pathways were indicated in medulloblastoma, and CDK1, CCNB1, CDK2, and WEE1 were identified as some of the important genes in the medulloblastoma. Conclusion: Identification of critical and specific pathway in any disease, in our case medulloblastoma, can lead us to better clinical management and accurate treatment and target therapy.

摘要

引言

癌症治疗的主要挑战之一是缺乏针对癌症的特异性和精确治疗。数据分析有助于了解潜在的分子机制,从而实现更好的治疗。DNA微阵列数据的可用性和可靠性不断提高,使得这些数据在多种癌症中的应用日益增加。本研究旨在应用和评估微阵列数据分析,识别髓母细胞瘤患者的重要通路和基因网络,以改善治疗方法,特别是靶向治疗。方法:在本研究中,从Geo数据集中提取微阵列基因表达数据(GSE50161),然后通过affylmGUI软件包进行分析,以预测和研究髓母细胞瘤中上调和下调的基因。然后,使用软件和基因富集分析确定重要通路。通过Cytoscape进行通路可视化和网络分析。结果:与正常样本相比,在髓母细胞瘤中总共鉴定出249个差异表达基因(DEG)。细胞周期、p53和FoxO信号通路在髓母细胞瘤中被指出,CDK1、CCNB1、CDK2和WEE1被确定为髓母细胞瘤中的一些重要基因。结论:识别任何疾病(在我们的案例中为髓母细胞瘤)中的关键和特定通路,可以使我们实现更好的临床管理、精确治疗和靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d727/6485566/79bcf967511c/APJCP-20-221-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验