Suppr超能文献

不确定性下的推理。

Reasoning under uncertainty.

机构信息

School of Mathematics, Maxwell Institute and Joseph Bell Centre for Forensic Statistics and Legal Reasoning, University of Edinburgh, Edinburgh, UK.

Department of Primary Education, University of Ioannina, Panepistimioupoli, Ioannina, Greece.

出版信息

Evid Based Ment Health. 2019 Feb;22(1):44-48. doi: 10.1136/ebmental-2018-300074. Epub 2019 Jan 24.

Abstract

INTRODUCTION

It is difficult to reason correctly when the information available is uncertain. Reasoning under uncertainty is also known as probabilistic reasoning.

METHODS

We discuss probabilistic reasoning in the context of a medical diagnosis or prognosis. The information available are symptoms for the diagnosis or diagnosis for the prognosis. We show how probabilities of events are updated in the light of new evidence (conditional probabilities/Bayes' theorem). A resolution is explained in which the support of the information for the diagnosis or prognosis is measured by the comparison of two probabilities, a statistic also known as the likelihood ratio.

RESULTS

The likelihood ratio is a continuous measure of support that is not subject to the discrete nature of statistical significance where a result is either classified as 'significant' or 'not significant'. It updates prior beliefs about diagnoses or prognoses in a coherent manner and enables proper consideration of successive pieces of information.

DISCUSSION

Probabilistic reasoning is not innate and relies on good education. Common mistakes include the 'prosecutor's fallacy' and the interpretation of relative measures without consideration of the actual risks of the outcome, for example, interpretation of a likelihood ratio without taking into account the prior odds.

摘要

简介

当可用信息不确定时,很难进行正确推理。不确定情况下的推理也称为概率推理。

方法

我们在医学诊断或预后的背景下讨论概率推理。可用的信息是诊断的症状或预后的诊断。我们展示了如何根据新证据(条件概率/贝叶斯定理)更新事件概率。解释了一种分辨率,其中通过比较两个概率来衡量信息对诊断或预后的支持,该统计量也称为似然比。

结果

似然比是对支持的连续度量,不受统计显着性的离散性质的影响,其中结果要么被分类为“显着”或“不显着”。它以一致的方式更新关于诊断或预后的先验信念,并能够适当考虑连续的信息。

讨论

概率推理不是天生的,需要良好的教育。常见的错误包括“检察官谬误”和在不考虑结果实际风险的情况下解释相对措施,例如,在不考虑先验几率的情况下解释似然比。

相似文献

1
Reasoning under uncertainty.不确定性下的推理。
Evid Based Ment Health. 2019 Feb;22(1):44-48. doi: 10.1136/ebmental-2018-300074. Epub 2019 Jan 24.
3
Uncertainty in clinical prediction rules: the value of credible intervals.临床预测规则中的不确定性:可信区间的价值。
J Orthop Sports Phys Ther. 2014 Feb;44(2):85-91. doi: 10.2519/jospt.2014.4877. Epub 2013 Oct 30.
4
Epidemiology visualized: the prosecutor's fallacy.可视化流行病学:检察官谬误。
Am J Epidemiol. 2014 May 1;179(9):1125-7. doi: 10.1093/aje/kwu025. Epub 2014 Mar 6.
9
Bayes' rule in diagnosis.贝叶斯法则在诊断中的应用。
J Clin Epidemiol. 2021 Mar;131:158-160. doi: 10.1016/j.jclinepi.2020.12.021.

引用本文的文献

2
Artificial Intelligence and Diagnostics in Medicine and Forensic Science.医学与法医学中的人工智能与诊断
Diagnostics (Basel). 2023 Nov 28;13(23):3554. doi: 10.3390/diagnostics13233554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验