Suppr超能文献

贝叶斯法则在诊断中的应用。

Bayes' rule in diagnosis.

机构信息

Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.

出版信息

J Clin Epidemiol. 2021 Mar;131:158-160. doi: 10.1016/j.jclinepi.2020.12.021.

Abstract

Establishing an accurate diagnosis is crucial in everyday clinical practice. It forms the starting point for clinical decision-making, for instance regarding treatment options or further testing. In this context, clinicians have to deal with probabilities (instead of certainties) that are often hard to quantify. During the diagnostic process, clinicians move from the probability of disease before testing (prior or pretest probability) to the probability of disease after testing (posterior or posttest probability) based on the results of one or more diagnostic tests. This reasoning in probabilities is reflected by a statistical theorem that has an important application in diagnosis: Bayes' rule. A basic understanding of the use of Bayes' rule in diagnosis is pivotal for clinicians. This rule shows how both the prior probability (also called prevalence) and the measurement properties of diagnostic tests (sensitivity and specificity) are crucial determinants of the posterior probability of disease (predictive value), on the basis of which clinical decisions are made. This article provides a simple explanation of the interpretation and use of Bayes' rule in diagnosis.

摘要

在日常临床实践中,做出准确的诊断至关重要。它是临床决策的起点,例如治疗方案或进一步检查的选择。在这种情况下,临床医生必须处理(往往难以量化的)概率,而非确定性。在诊断过程中,临床医生根据一项或多项诊断测试的结果,将测试前(先验或术前)疾病的概率转移到测试后(后验或术后)疾病的概率。这种概率推理由一个在诊断中有重要应用的统计定理反映,即贝叶斯定理。临床医生基本了解贝叶斯定理在诊断中的应用是至关重要的。该规则表明,在先验概率(也称为患病率)和诊断测试的测量特性(灵敏度和特异性)是疾病后验概率(预测值)的关键决定因素,临床决策就是基于该概率做出的。本文对贝叶斯定理在诊断中的解释和应用提供了一个简单的解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验