Suppr超能文献

具有高强度和抗水解界面的有机-无机固态杂化

Organic-Inorganic Solid-State Hybridization with High-Strength and Anti-Hydrolysis Interface.

作者信息

Yang Tilo H, Kao C Robert, Shigetou Akitsu

机构信息

Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.

National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan.

出版信息

Sci Rep. 2019 Jan 24;9(1):504. doi: 10.1038/s41598-018-37052-1.

Abstract

Organic-inorganic material hybridization at the solid-state level is indispensable for the integration of IoT applications, but still remains a challenging issue. Existing bonding strategies in the field of electronic packaging tend to employ vacuum or ultrahigh temperature; however, these can cause process complications and material deterioration. Here we report an easy-to-tune method to achieve hybrid bonding at the solid-state level and under the ambient atmosphere. Vacuum-ultraviolet (VUV)-induced reorganization with ethanol was used to develop hydroxyl-carrying alkyl chains through coordinatively-bonded carboxylate onto aluminum, whereas numerous hydroxyl-carrying alkyls were created on polyimide. The triggering of dehydration through these hydroxyls by merely heating at 150 °C for a few minutes produced robust organic-inorganic reticulated complexes within the aluminum/polyimide interface. The as-bonded aluminum/polyimide interface possessed an superior fracture energy of (2.40 ± 0.36) × 10 (J/m) compared with aluminum and polyimide matrices themselves, which was mainly attributed to crack deflection due to the nano-grains of inorganic-organic reticulated complexes. The interfacial adhesion was successfully kept after humidity test, which was contributed by those anti-hydrolytic carboxylates. To the best of our knowledge, for the first time organic-inorganic bonding at the solid-state level was achieved using the ethanol-assisted VUV (E-VUV) process, a strategy which should be applicable to a diversity of plastics and metals with native oxides.

摘要

固态层面的有机-无机材料杂化对于物联网应用的集成不可或缺,但仍然是一个具有挑战性的问题。电子封装领域现有的键合策略倾向于采用真空或超高温;然而,这些方法会导致工艺复杂和材料劣化。在此,我们报告一种易于调节的方法,可在固态层面和环境气氛下实现杂化键合。利用真空紫外线(VUV)与乙醇诱导的重组,通过羧酸根配位键在铝上形成携带羟基的烷基链,而在聚酰亚胺上生成大量携带羟基的烷基。仅在150 °C加热几分钟,通过这些羟基引发脱水反应,就在铝/聚酰亚胺界面内产生了坚固的有机-无机网状复合物。与铝和聚酰亚胺基体本身相比,键合后的铝/聚酰亚胺界面具有(2.40 ± 0.36) × 10 (J/m)的优异断裂能,这主要归因于无机-有机网状复合物的纳米颗粒导致的裂纹偏转。湿度测试后,界面附着力得以成功保持,这得益于那些抗水解的羧酸盐。据我们所知,首次使用乙醇辅助的VUV(E-VUV)工艺实现了固态层面的有机-无机键合,该策略应适用于多种带有天然氧化物的塑料和金属。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297e/6345999/a56d44786115/41598_2018_37052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验