Suppr超能文献

从电子健康记录中提取的数据需要验证。

Data electronically extracted from the electronic health record require validation.

机构信息

Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

J Perinatol. 2019 Mar;39(3):468-474. doi: 10.1038/s41372-018-0311-8. Epub 2019 Jan 24.

Abstract

OBJECTIVES

Determine sources of error in electronically extracted data from electronic health records.

STUDY DESIGN

Categorical and continuous variables related to early-onset neonatal hypoglycemia were preselected and electronically extracted from records of 100 randomly selected neonates within 3479 births with laboratory-proven early-onset hypoglycemia. Extraction language was written by an information technologist and data validated by blinded manual chart review. Kappa coefficient assessed categorical variables and percent validity continuous variables.

RESULTS

8/23 (35%) categorical variables had acceptable Κappa (1-0.81); 5/23 (22%) had fair-slight agreement, Κappa < 0.40. Notably, "hypoglycemia" had poor agreement, Κappa 0.16. In contrast, 6/8 continuous variables had validity ≥ 94%. After correcting extraction language, 6/9 variables were corrected and inter-rater validation improved. However, "hypoglycemia" was not corrected, remaining an issue.

CONCLUSIONS

Data extraction without validation procedures, especially categorical variables using International Classification of Diseases-9 (ICD-9) codes, often results in incorrect data identification. Electronically extracted data must incorporate built-in validating processes.

摘要

目的

确定电子健康记录中电子提取数据的误差源。

研究设计

选择与早发性新生儿低血糖相关的分类变量和连续变量,并从 3479 例经实验室证实的早发性低血糖出生的 100 例随机新生儿记录中电子提取。提取语言由信息技术专家编写,数据通过盲法手工图表审查进行验证。Kappa 系数评估分类变量,百分比有效性评估连续变量。

结果

23 个分类变量中有 8 个(35%)具有可接受的 Kappa(1-0.81);5 个(22%)具有一般到轻微一致性,Kappa<0.40。值得注意的是,“低血糖”一致性差,Kappa 为 0.16。相比之下,8 个连续变量中有 6 个(75%)有效性≥94%。在纠正提取语言后,9 个变量中有 6 个得到纠正,并且重新评估者之间的一致性得到提高。然而,“低血糖”没有得到纠正,仍然是一个问题。

结论

没有验证程序的数据提取,特别是使用国际疾病分类第 9 版(ICD-9)代码的分类变量,通常会导致数据识别错误。电子提取的数据必须包含内置的验证过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验