Suppr超能文献

干粘附与摩擦中的接触分离:降低粗糙度的影响

Contact splitting in dry adhesion and friction: reducing the influence of roughness.

作者信息

Kim Jae-Kang, Varenberg Michael

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Beilstein J Nanotechnol. 2019 Jan 2;10:1-8. doi: 10.3762/bjnano.10.1. eCollection 2019.

Abstract

Splitting a large contact area into finer, sub-contact areas is thought to result in higher adaptability to rough surfaces, stronger adhesion, and a more uniform stress distribution with higher tolerance to defects. However, while it is widely believed that contact splitting helps to mitigate the negative effects of roughness on adhesion- and friction-based attachment, no decisive experimental validation of this hypothesis has been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness. Our results clearly demonstrate that the adhesion- and friction-driven attachment of the wall-shaped microstructure degrades, regardless of the surface waviness, when the surface roughness increases. Second, splitting the wall-shaped microstructure indeed helps to mitigate the negative effect of the increasing surface unevenness by allowing the split microstructure to adapt more easily to the surface waviness and by reducing the effective average peeling angle. These findings can be used to guide the development of biomimetic shear-actuated adhesives suitable for operation not only on smooth but also on rough surfaces.

摘要

将较大的接触面积划分为更精细的子接触面积,被认为能使其对粗糙表面具有更高的适应性、更强的附着力以及更均匀的应力分布,并且对缺陷具有更高的耐受性。然而,尽管人们普遍认为接触分裂有助于减轻粗糙度对基于附着力和摩擦力的附着的负面影响,但迄今为止,对于基于薄膜的粘合剂,尚未对这一假设进行决定性的实验验证。为此,我们报告了原始的和分裂的壁状粘合剂微结构在粗糙度跨越四个数量级的不同表面上的行为。我们的结果清楚地表明,当表面粗糙度增加时,无论表面波纹如何,壁状微结构的附着力和摩擦力驱动的附着都会降低。其次,将壁状微结构分裂确实有助于减轻表面不均匀性增加的负面影响,这是通过使分裂后的微结构更容易适应表面波纹以及减小有效平均剥离角度来实现的。这些发现可用于指导仿生剪切驱动粘合剂的开发,这种粘合剂不仅适用于光滑表面,也适用于粗糙表面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ec/6334799/2ba71dc649f6/Beilstein_J_Nanotechnol-10-01-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验