Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.
Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland.
FASEB J. 2019 Apr;33(4):5741-5754. doi: 10.1096/fj.201802451R. Epub 2019 Jan 25.
Bottom-up bioengineering utilizes the inherent capacity of cells to build highly sophisticated structures with high levels of biomimicry. Despite the significant advancements in the field, monodomain approaches require prolonged culture time to develop an implantable device, usually associated with cell phenotypic drift in culture. Herein, we assessed the simultaneous effect of macromolecular crowding (MMC) and mechanical loading in enhancing extracellular matrix (ECM) deposition while maintaining tenocyte (TC) phenotype and differentiating bone marrow stem cells (BMSCs) or transdifferentiating neonatal and adult dermal fibroblasts toward tenogenic lineage. At d 7, all cell types presented cytoskeleton alignment perpendicular to the applied load independently of the use of MMC. MMC enhanced ECM deposition in all cell types. Gene expression analysis indicated that MMC and mechanical loading maintained TC phenotype, whereas tenogenic differentiation of BMSCs or transdifferentiation of dermal fibroblasts was not achieved. Our data suggest that multifactorial bottom-up bioengineering approaches significantly accelerate the development of biomimetic tissue equivalents.-Gaspar, D., Ryan, C. N. M., Zeugolis, D. I. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes.
自下而上的生物工程利用细胞的固有能力构建具有高度仿生特性的高度复杂结构。尽管该领域取得了重大进展,但单域方法需要延长培养时间来开发可植入设备,这通常与培养过程中的细胞表型漂移有关。在这里,我们评估了高分子拥挤(MMC)和机械加载同时增强细胞外基质(ECM)沉积的效果,同时保持肌腱细胞(TC)表型,并使骨髓干细胞(BMSCs)分化或使新生儿和成年真皮成纤维细胞转分化为肌腱样谱系。在第 7 天,所有细胞类型的细胞骨架均垂直于施加的负载排列,而与是否使用 MMC 无关。MMC 增强了所有细胞类型的 ECM 沉积。基因表达分析表明,MMC 和机械加载维持了 TC 表型,而 BMSCs 的肌腱分化或真皮成纤维细胞的转分化并未实现。我们的数据表明,多因素自下而上的生物工程方法可显著加速仿生组织等效物的开发。