Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2019 Jan 25;10(1):443. doi: 10.1038/s41467-019-08356-1.
The photocatalytic conversion of the greenhouse gas CO to chemical fuels such as hydrocarbons and alcohols continues to be a promising technology for renewable generation of energy. Major advancements have been made in improving the efficiencies and product selectiveness of currently known CO reduction electrocatalysts, nonetheless, materials discovery is needed to enable economically viable, industrial-scale CO reduction. We report here the largest CO photocathode search to date, starting with 68860 candidate materials, using a rational first-principles computation-based screening strategy to evaluate synthesizability, corrosion resistance, visible-light absorption, and compatibility of the electronic structure with fuel synthesis. The results confirm the observation of the literature that few materials meet the stringent CO photocathode requirements, with only 52 materials meeting all requirements. The results are well validated with respect to the literature, with 9 of these materials having been studied for CO reduction, and the remaining 43 materials are discoveries from our pipeline that merit further investigation.
将温室气体 CO 光催化转化为烃类和醇类等化学燃料,一直是可再生能源的一项很有前途的技术。在提高现有 CO 还原电催化剂的效率和产物选择性方面已经取得了重大进展,但仍需要进行材料发现,以实现经济可行的、工业规模的 CO 还原。我们在此报告迄今为止最大的 CO 光电阴极搜索,从 68860 种候选材料开始,使用基于合理第一性原理计算的筛选策略来评估可合成性、耐腐蚀性、可见光吸收以及与燃料合成的电子结构兼容性。结果证实了文献中的观察结果,即很少有材料满足严格的 CO 光电阴极要求,只有 52 种材料满足所有要求。结果与文献很好地吻合,其中 9 种材料已经被研究用于 CO 还原,其余 43 种材料是我们研究管道中的发现,值得进一步研究。