Yan Qimin, Yu Jie, Suram Santosh K, Zhou Lan, Shinde Aniketa, Newhouse Paul F, Chen Wei, Li Guo, Persson Kristin A, Gregoire John M, Neaton Jeffrey B
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
Department of Physics, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3040-3043. doi: 10.1073/pnas.1619940114. Epub 2017 Mar 6.
The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2-2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishes ternary metal vanadates as a prolific class of photoanode materials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory-experiment pipeline as a prolific approach to materials discovery.
已知的低带隙光电催化材料数量有限,这给利用阳光生成化学燃料带来了重大挑战。通过在综合工作流程中将高通量从头算理论与实验相结合,我们在目标带隙范围(1.2 - 2.8电子伏特)内发现了八种三元钒酸盐光阳极。对这些钒酸盐化合物的详细分析揭示了VO结构基序和电子带边特性在高效光阳极中的关键作用,开创了此类材料的基因组,并为广泛适用的高通量发现和按设计材料反馈回路铺平了道路。我们的研究大幅扩充了已知的用于水氧化的光电催化剂数量,确立了三元金属钒酸盐作为一类丰富的光阳极材料,可用于利用阳光生成化学燃料,并证明了我们的高通量理论 - 实验流程是一种丰富的材料发现方法。