Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Apoptosis. 2019 Apr;24(3-4):221-244. doi: 10.1007/s10495-019-01523-1.
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
细胞程序性死亡(细胞凋亡)的一个主要特征是导致死亡细胞的外膜上磷脂酰丝氨酸(PS)的表达增加。因此,PS 是单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)进行非侵入性凋亡成像的极佳靶点。膜联蛋白 V 是一种 36 kDa 的蛋白质,在 Ca 离子存在的情况下与 PS 高亲和力结合。这使得放射性标记的膜联蛋白成为用于临床和生物医学研究的有价值的凋亡成像剂,可用于监测体内的凋亡。然而,放射性标记的膜联蛋白 V 用于体内细胞死亡成像遇到了各种挑战,这些挑战阻止了它在临床上的应用。这些困难包括:复杂且耗时的放射性标记程序、不理想的生物分布、导致肿瘤与血液对比度不佳的药代动力学不足、对体内 Ca 浓度的依赖、肿瘤组织穿透性低以及对构成最佳成像方案的理解不完整凋亡诱导后。因此,需要开发 PS 结合放射性示踪剂的新概念和改进策略。放射性标记的 PS 结合肽和各种 Zn(II) 配合物作为磷酸化学传感器为使用 PET 和 SPECT 进行凋亡的放射性核素分子成像提供了一种创新策略。放射性标记的肽和 Zn(II) 配合物与膜联蛋白 V 相比具有几个优势,包括由于其较小的尺寸、更好的可用性、更简单的合成和放射性标记策略以及由于其较小的尺寸和更快的血液清除谱而导致更好的药代动力学,这允许优化图像对比度。此外,可以对肽进行结构修饰以改善代谢稳定性以及其他药代动力学和药效学特性。本综述将总结目前开发的放射性标记的膜联蛋白、肽和 Zn(II) 配合物作为通过靶向 PS 利用 PET 和 SPECT 成像来成像凋亡的放射性示踪剂的现状。