Suppr超能文献

纤维细胞生长因子-2 与肝素硫酸蛋白聚糖的结合随流动适应细胞中的切应力变化而变化。

Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells.

机构信息

School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA.

Mechanical Engineering and Mechanics Department, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA.

出版信息

Ann Biomed Eng. 2019 Apr;47(4):1078-1093. doi: 10.1007/s10439-019-02202-7. Epub 2019 Jan 28.

Abstract

Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.

摘要

成纤维细胞生长因子 2(FGF2)是血管生成的重要调节剂,它与内皮细胞(EC)表面的成纤维细胞生长因子受体(FGFRs)和硫酸乙酰肝素蛋白聚糖(HSPGs)结合。FGF2 结合动力学主要在静态培养中进行研究;然而,内皮细胞不断受到流动的影响,这可能会影响 FGF2 的结合。因此,我们使用实验和计算技术来研究流动环境中 EC 中 FGF2 结合如何发生变化。适应 24 小时流动的 EC 表现出双相 FGF2-HSPG 结合,随着 FGF2-HSPG 复合物增加至 20 达因/厘米的剪切力,然后在更高的剪切力下减少。为了了解 EC 表面在响应剪切力时的适应性重塑如何影响 FGF2 与 FGFR 和 HSPG 的结合,我们实施了一个计算模型来预测流动引起的表面受体变化的相对影响。然后,我们使用从基膜研究中开发的 HSPG 可用性与 FGF2-HSPG 解离和流动之间的关系以及包括 HSPG 产生的关系,将计算模型拟合到实验数据中。这些研究表明,由于细胞表面受体数量、可用性和结合动力学的变化,适应流动的 EC 中的 FGF2 结合动力学发生改变,这可能会影响细胞生长因子的反应。

相似文献

1
Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells.
Ann Biomed Eng. 2019 Apr;47(4):1078-1093. doi: 10.1007/s10439-019-02202-7. Epub 2019 Jan 28.
2
A computational model of fibroblast growth factor-2 binding to endothelial cells under fluid flow.
Ann Biomed Eng. 2013 Jan;41(1):154-71. doi: 10.1007/s10439-012-0622-4. Epub 2012 Jul 24.
3
Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly.
Biochemistry. 2004 Apr 27;43(16):4724-30. doi: 10.1021/bi0352320.
4
Fibroblast growth factor-2 binding to the endothelial basement membrane peaks at a physiologically relevant shear stress.
Matrix Biol. 2010 Sep;29(7):586-93. doi: 10.1016/j.matbio.2010.07.003. Epub 2010 Aug 1.
6
A computational model of FGF-2 binding and HSPG regulation under flow.
IEEE Trans Biomed Eng. 2009 Sep;56(9):2147-55. doi: 10.1109/TBME.2008.2002109. Epub 2008 Jul 15.
9
A reaction-diffusion model of basic fibroblast growth factor interactions with cell surface receptors.
Ann Biomed Eng. 2004 May;32(5):645-63. doi: 10.1023/b:abme.0000030231.88326.78.
10

引用本文的文献

2
The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy.
Front Endocrinol (Lausanne). 2022 Aug 25;13:918869. doi: 10.3389/fendo.2022.918869. eCollection 2022.
3
New developments in the biology of fibroblast growth factors.
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.
4
Polarized Proteins in Endothelium and Their Contribution to Function.
J Vasc Res. 2021;58(2):65-91. doi: 10.1159/000512618. Epub 2021 Jan 27.
5
Preclinical techniques to investigate exercise training in vascular pathophysiology.
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1566-H1600. doi: 10.1152/ajpheart.00719.2020. Epub 2021 Jan 1.

本文引用的文献

1
Nanomechanics on FGF-2 and Heparin Reveal Slip Bond Characteristics with pH Dependency.
ACS Biomater Sci Eng. 2017 Jun 12;3(6):1000-1007. doi: 10.1021/acsbiomaterials.6b00723. Epub 2017 Apr 4.
3
Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.
Atherosclerosis. 2014 Apr;233(2):682-690. doi: 10.1016/j.atherosclerosis.2014.01.056. Epub 2014 Feb 11.
4
Heparan sulfate proteoglycan as a cell-surface endocytosis receptor.
Matrix Biol. 2014 Apr;35:51-5. doi: 10.1016/j.matbio.2013.10.004. Epub 2013 Oct 18.
5
Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation.
Cell Mol Bioeng. 2013 Jun;6(2):160-174. doi: 10.1007/s12195-013-0273-z. Epub 2013 Feb 20.
6
A computational model of fibroblast growth factor-2 binding to endothelial cells under fluid flow.
Ann Biomed Eng. 2013 Jan;41(1):154-71. doi: 10.1007/s10439-012-0622-4. Epub 2012 Jul 24.
7
Entry of a heparan sulphate-binding HRV8 variant strictly depends on dynamin but not on clathrin, caveolin, and flotillin.
Virology. 2011 Mar 30;412(1):55-67. doi: 10.1016/j.virol.2010.12.042. Epub 2011 Jan 22.
8
Endothelial cell capture of heparin-binding growth factors under flow.
PLoS Comput Biol. 2010 Oct 28;6(10):e1000971. doi: 10.1371/journal.pcbi.1000971.
9
Fibroblast growth factor-2 binding to the endothelial basement membrane peaks at a physiologically relevant shear stress.
Matrix Biol. 2010 Sep;29(7):586-93. doi: 10.1016/j.matbio.2010.07.003. Epub 2010 Aug 1.
10
Shear stress and the endothelial transport barrier.
Cardiovasc Res. 2010 Jul 15;87(2):320-30. doi: 10.1093/cvr/cvq146. Epub 2010 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验