School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA.
Mechanical Engineering and Mechanics Department, Drexel University, 3141 Chestnut St, Philadelphia, PA, USA.
Ann Biomed Eng. 2019 Apr;47(4):1078-1093. doi: 10.1007/s10439-019-02202-7. Epub 2019 Jan 28.
Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.
成纤维细胞生长因子 2(FGF2)是血管生成的重要调节剂,它与内皮细胞(EC)表面的成纤维细胞生长因子受体(FGFRs)和硫酸乙酰肝素蛋白聚糖(HSPGs)结合。FGF2 结合动力学主要在静态培养中进行研究;然而,内皮细胞不断受到流动的影响,这可能会影响 FGF2 的结合。因此,我们使用实验和计算技术来研究流动环境中 EC 中 FGF2 结合如何发生变化。适应 24 小时流动的 EC 表现出双相 FGF2-HSPG 结合,随着 FGF2-HSPG 复合物增加至 20 达因/厘米的剪切力,然后在更高的剪切力下减少。为了了解 EC 表面在响应剪切力时的适应性重塑如何影响 FGF2 与 FGFR 和 HSPG 的结合,我们实施了一个计算模型来预测流动引起的表面受体变化的相对影响。然后,我们使用从基膜研究中开发的 HSPG 可用性与 FGF2-HSPG 解离和流动之间的关系以及包括 HSPG 产生的关系,将计算模型拟合到实验数据中。这些研究表明,由于细胞表面受体数量、可用性和结合动力学的变化,适应流动的 EC 中的 FGF2 结合动力学发生改变,这可能会影响细胞生长因子的反应。