Suppr超能文献

基于小波和特征袋的医学图像检索的多特征融合方法。

Multi-feature fusion method for medical image retrieval using wavelet and bag-of-features.

机构信息

Center for Post-Doctoral Studies of Computer Science and Technology, Harbin University of Science and Technology , Harbin , Heilongjiang , China.

College of Computer and Information Engineering, Harbin University of Commerce , Harbin , Heilongjiang , China.

出版信息

Comput Assist Surg (Abingdon). 2019 Oct;24(sup1):72-80. doi: 10.1080/24699322.2018.1560087. Epub 2019 Jan 28.

Abstract

Color, texture, and shape are the common features used for the retrieval systems. However, many medical images have a spot of color information. Therefore, the discriminative texture and shape features should be extracted to obtain a satisfied retrieval result. In order to increase the credibility of the retrieval process, many features can be combined to be used for medical image retrieval. Meanwhile, more features require more processing time, which will decrease the retrieval speed. In this paper, wavelet decomposition is adopted to generate different resolution images. Bag-of-feature, texture, and LBP feature are extracted from three different-level wavelet images. Finally, the similarity measure function is obtained by fusing these three types of features. Experimental results show that the proposed multi-feature fusion method can achieve a higher retrieval accuracy with an acceptable retrieval time.

摘要

颜色、纹理和形状是检索系统中常用的特征。然而,许多医学图像的颜色信息是斑点状的。因此,应该提取有区别的纹理和形状特征,以获得满意的检索结果。为了提高检索过程的可信度,可以结合使用许多特征进行医学图像检索。同时,更多的特征需要更多的处理时间,这将降低检索速度。在本文中,采用小波分解生成不同分辨率的图像。从三个不同层次的小波图像中提取特征,包括特征袋、纹理和 LBP 特征。最后,通过融合这三种类型的特征来获得相似性度量函数。实验结果表明,所提出的多特征融合方法可以在可接受的检索时间内获得更高的检索精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验