Suppr超能文献

CRISPR-Cas10介导的烈性葡萄球菌噬菌体编辑

CRISPR-Cas10 assisted editing of virulent staphylococcal phages.

作者信息

Nayeemul Bari S M, Hatoum-Aslan Asma

机构信息

Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States.

Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States.

出版信息

Methods Enzymol. 2019;616:385-409. doi: 10.1016/bs.mie.2018.10.023. Epub 2018 Dec 17.

Abstract

Phages are the most abundant entities in the biosphere and profoundly impact the bacterial populations within and around us. They attach to a specific host, inject their DNA, hijack the host's cellular processes, and replicate exponentially while destroying the host. Historically, phages have been exploited as powerful antimicrobials, and phage-derived proteins have constituted the basis for numerous biotechnological applications. Only in recent years have metagenomic studies revealed that phage genomes harbor a rich reservoir of genetic diversity, which might afford further therapeutic and/or biotechnological value. Nevertheless, functions for the majority of phage genes remain unknown, and due to their swift and destructive replication cycle, many phages are intractable by current genetic engineering techniques. Whether to advance the basic understanding of phage biology or to tap into their potential applications, efficient methods for phage genetic engineering are needed. Recent reports have shown that CRISPR-Cas systems, a class of prokaryotic immune systems that protect against phage infection, can be harnessed to engineer diverse phages. In this chapter, we describe methods to genetically manipulate virulent phages using CRISPR-Cas10, a Type III-A CRISPR-Cas system native to Staphylococcus epidermidis. A method for engineering phages that infect a CRISPR-less Staphylococcus aureus host is also described. Both approaches have proved successful in isolating desired phage mutants with 100% efficiency, demonstrating that CRISPR-Cas10 constitutes a powerful tool for phage genetic engineering. The relatively widespread presence of Type III CRISPR-Cas systems in bacteria and archaea imply that similar strategies may be used to manipulate the genomes of diverse prokaryotic viruses.

摘要

噬菌体是生物圈中数量最多的实体,对我们体内和周围的细菌种群有着深远影响。它们附着于特定宿主,注入自身DNA,操控宿主的细胞进程,并在破坏宿主的同时呈指数级复制。从历史上看,噬菌体一直被用作强大的抗菌剂,噬菌体衍生的蛋白质构成了众多生物技术应用的基础。直到近年来,宏基因组研究才揭示噬菌体基因组蕴藏着丰富的遗传多样性,这可能具有进一步的治疗和/或生物技术价值。然而,大多数噬菌体基因的功能仍然未知,并且由于其快速且具有破坏性的复制周期,许多噬菌体难以用当前的基因工程技术进行处理。无论是为了增进对噬菌体生物学的基本理解,还是挖掘它们的潜在应用,都需要高效的噬菌体基因工程方法。最近的报告表明,CRISPR-Cas系统(一类可抵御噬菌体感染的原核生物免疫系统)可用于对多种噬菌体进行工程改造。在本章中,我们描述了使用CRISPR-Cas10(一种源自表皮葡萄球菌的III-A型CRISPR-Cas系统)对烈性噬菌体进行基因操作的方法。还描述了一种对感染无CRISPR金黄色葡萄球菌宿主的噬菌体进行工程改造的方法。这两种方法都已成功以100%的效率分离出所需的噬菌体突变体,表明CRISPR-Cas10是噬菌体基因工程的强大工具。III型CRISPR-Cas系统在细菌和古菌中相对广泛存在,这意味着可能可以使用类似策略来操纵多种原核病毒的基因组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验