Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Waste Manag. 2019 Feb 1;84:158-165. doi: 10.1016/j.wasman.2018.11.021. Epub 2018 Nov 27.
Recycling and reuse of electronic wastes (e-wastes) are becoming an increasingly critical strategy for securing metal resources as well as for minimizing environmental impacts. Thiourea leaching of gold (Au) from e-wastes can be considered an alternative to highly toxic cyanidation, provided that its reagents consumption can be largely reduced. While awareness of the use of biohydrometallurgical techniques in metal mining industries is increasing, the knowledge on microbiological precious metal solubilization is still limited. This led us to investigate and clarify for the first time the potential utility of microbiologically-mediated thiourea leaching (TU-bioleaching) of Au, with a special focus on reducing the reagents consumption while facilitating Au dissolution. Initial screening tests found that different Fe-oxidizing bacteria/archaea possessed varying degrees of thiourea tolerance (5-100 mM). When thiourea and PCB (Printed Circuit Boards) co-exist, Acidiplasma sp. Fv-Ap displayed the most robust Fe-oxidation. The Eh level during the reaction was first optimized by fluctuating the initial ratio of thiourea to Fe (TU:Fe = 2:1-40:1, by using 1 mM Fe vs. 2-40 mM thiourea). The ratio precisely determined the Eh level during the TU-bioleaching and dictated the fate of thiourea decomposition and the resultant Au dissolution from PCB. Microbial contribution to Fe regeneration was seen to support steady and continuous Au dissolution, enabling 98% Au dissolution while using low reagent concentrations of 1 mM Fe and 10 mM thiourea under the microbial Eh control at around 490-545 mV. This novel TU-bioleaching process offers a new alternative approach for Au recycling from e-wastes and minimization of environmental hazards.
电子废物 (e-wastes) 的回收再利用正成为获取金属资源和最小化环境影响的重要策略。从电子废物中用硫脲浸金 (Au) 可以替代剧毒的氰化法,只要能大大减少其试剂消耗。虽然生物冶金技术在金属矿业中的应用越来越受到关注,但微生物在溶解贵金属方面的知识仍然有限。这促使我们首次调查和阐明了微生物介导的硫脲浸金(TU-生物浸金)的潜在用途,重点是在促进 Au 溶解的同时减少试剂消耗。初步筛选试验发现,不同的 Fe 氧化菌/古菌对硫脲的耐受程度不同(5-100 mM)。当硫脲和 PCB(印刷电路板)共存时,Acidiplasma sp. Fv-Ap 表现出最强的 Fe 氧化能力。通过波动硫脲与 Fe 的初始比例(TU:Fe=2:1-40:1,用 1 mM Fe 与 2-40 mM 硫脲),首先优化了反应过程中的 Eh 水平。该比例精确地确定了 TU-生物浸金过程中的 Eh 水平,并决定了硫脲分解和 PCB 中 Au 溶解的命运。可以看到微生物对 Fe 再生的贡献,支持 Au 的稳定和连续溶解,在微生物 Eh 控制下,使用 1 mM Fe 和 10 mM 硫脲的低试剂浓度,Au 的溶解率达到 98%,Eh 约为 490-545 mV。这种新颖的 TU-生物浸金工艺为从电子废物中回收 Au 并最小化环境危害提供了一种新的替代方法。