Suppr超能文献

一种自给自足的富氟纳米平台用于缓解肿瘤乏氧和增强癌症的光动力治疗。

An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers.

机构信息

National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China.

College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7731-7742. doi: 10.1021/acsami.8b19840. Epub 2019 Feb 12.

Abstract

The efficacy of photodynamic therapy (PDT) in the solid tumor is hampered by many challenges, including its oxygen self-consuming nature, insufficient oxygen levels within the hypoxic tumor microenvironment, and limited penetration of photosensitizers within tumors. Herein, we develop the IR780@O-SFNs/iRGD as an oxygen self-sufficient and tumor-penetrating nanoplatform, which consists of IR780-loaded pH-sensitive fluorocarbon-functionalized nanoparticles (SFNs) and iRGD as a tumor targeting peptide that can penetrate deeper within the tumor. Because of the high oxygen affinity and outstanding permeability of the obtained nanoplatform, oxygen and IR780 which are encapsulated in the same core can play their roles to the utmost, resulting in remarkably accelerated singlet oxygen production, as demonstrated in vitro by the 3D multicellular spheroids and in vivo by tumor tissues. More interestingly, a single-dose intravenous administration of IR780@O-SFNs/iRGD into mice bearing orthotopic breast cancer could selectively accumulate at the tumor site, highly alleviate the tumor hypoxia, significantly inhibit the primary tumor growth, and reduce the lung and liver metastasis, enabling the improved photodynamic therapeutic performance. Thus, this work paves an effective way to improve PDT efficacy through increasing tumor oxygenation and selective delivery of photosensitizers to the deep and hypoxic tumor.

摘要

光动力疗法(PDT)在实体瘤中的疗效受到许多挑战的阻碍,包括其氧气自消耗性质、缺氧肿瘤微环境中的氧气水平不足以及光敏剂在肿瘤内的有限穿透性。在此,我们开发了 IR780@O-SFNs/iRGD 作为一种氧气自充足和肿瘤穿透性的纳米平台,它由负载 IR780 的 pH 敏感氟碳功能化纳米颗粒(SFNs)和 iRGD 组成,iRGD 是一种肿瘤靶向肽,可以更深地穿透肿瘤。由于所获得的纳米平台具有高氧亲和力和出色的渗透性,因此封装在同一核心中的氧气和 IR780 可以最大限度地发挥作用,导致体外 3D 多细胞球体和体内肿瘤组织中显著加速单线态氧的产生。更有趣的是,单次静脉注射 IR780@O-SFNs/iRGD 到患有原位乳腺癌的小鼠中,可以选择性地在肿瘤部位积累,高度缓解肿瘤缺氧,显著抑制原发性肿瘤生长,并减少肺和肝转移,从而提高光动力治疗效果。因此,这项工作为通过增加肿瘤氧合和选择性地将光敏剂输送到深部和缺氧肿瘤来提高 PDT 疗效开辟了一条有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验