Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , 828 West Peachtree Street , Atlanta , Georgia 30332 , United States.
Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States.
Environ Sci Technol. 2019 Feb 19;53(4):2075-2085. doi: 10.1021/acs.est.8b07027. Epub 2019 Feb 11.
Structural tunability and surface functionality of layered two-dimensional (2-D) iron oxychloride (FeOCl) nanosheets are critical for attaining exceptional adsorption properties. In this study, we combine computational and experimental tools to elucidate the distinct adsorption nature of Pb(II) on 2-D FeOCl nanosheets. After finding promising Pb(II) adsorption characteristics by bulk FeOCl sheets (B-FeOCl), we applied computational quantum mechanical modeling to mechanistically explore Pb(II) adsorption on representative FeOCl facets. Results indicate that increasing the exposure of FeOCl oxygen and chlorine sites significantly enhances Pb(II) adsorption. The (110) and (010) facets of FeOCl possess distinct orientations of oxygen and chlorine, resulting in different Pb(II) adsorption energies. Consequently, the (110) facet was found to be more selective toward Pb(II) adsorption than the (010) facet. To exploit this insight, we exfoliated B-FeOCl to obtain ultrathin FeOCl nanosheets (U-FeOCl) possessing unique chlorine- and oxygen-enriched surfaces. As we surmised, U-FeOCl nanosheets achieved excellent Pb(II) adsorption capacity (709 mg g or 3.24 mmol g). Moreover, U-FeOCl demonstrated rapid adsorption kinetics, shortening adsorption equilibration time to one-third of the time for B-FeOCl. Extensive characterization of FeOCl-Pb adsorption complexes corroborated the simulation results, illustrating that increasing the number of Pb-O and Pb-Cl interaction sites led to the improved Pb(II) adsorption capacity of U-FeOCl.
层状二维(2-D)氧氯化铁(FeOCl)纳米片的结构可调性和表面功能对于获得优异的吸附性能至关重要。在这项研究中,我们结合计算和实验工具来阐明 Pb(II)在 2-D FeOCl 纳米片上的独特吸附性质。在发现块状 FeOCl 片(B-FeOCl)具有有前景的 Pb(II)吸附特性后,我们应用计算量子力学模型从机械角度探索 Pb(II)在代表性 FeOCl 晶面上的吸附。结果表明,增加 FeOCl 氧和氯位点的暴露程度可显著增强 Pb(II)的吸附。FeOCl 的(110)和(010)晶面具有不同的氧和氯取向,导致不同的 Pb(II)吸附能。因此,(110)晶面比(010)晶面更有利于 Pb(II)的吸附。为了利用这一见解,我们将 B-FeOCl 剥离得到具有独特氯和氧富集表面的超薄 FeOCl 纳米片(U-FeOCl)。正如我们所推测的,U-FeOCl 纳米片实现了出色的 Pb(II)吸附容量(709 mg g 或 3.24 mmol g)。此外,U-FeOCl 表现出快速的吸附动力学,将吸附平衡时间缩短至 B-FeOCl 的三分之一。对 FeOCl-Pb 吸附配合物的广泛表征证实了模拟结果,表明增加 Pb-O 和 Pb-Cl 相互作用位点的数量会提高 U-FeOCl 的 Pb(II)吸附容量。