School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
Microb Cell Fact. 2019 Jan 29;18(1):19. doi: 10.1186/s12934-019-1071-7.
The Twin-arginine translocation (Tat) pathway of Escherichia coli has great potential for the export of biopharmaceuticals to the periplasm due to its ability to transport folded proteins, and its proofreading mechanism that allows correctly folded proteins to translocate. Coupling the Tat-dependent protein secretion with the formation of disulfide bonds in the cytoplasm of E. coli CyDisCo provides a powerful platform for the production of industrially challenging proteins. In this study, we investigated the effects on the E. coli cells of exporting a folded substrate (scFv) to the periplasm using a Tat signal peptide, and the effects of expressing an export-incompetent misfolded variant.
Cell growth is decreased when either the correctly folded or misfolded scFv is expressed with a Tat signal peptide. However, only the production of misfolded scFv leads to cell aggregation and formation of inclusion bodies. The comprehensive proteomic analysis revealed that both conditions, recombinant protein overexpression and misfolded protein accumulation, lead to downregulation of membrane transporters responsible for protein folding and insertion into the membrane while upregulating the production of chaperones and proteases involved in removing aggregates. These conditions also differentially affect the production of transcription factors and proteins involved in DNA replication. The most distinct stress response observed was the cell aggregation caused by elevated levels of antigen 43. Finally, Tat-dependent secretion causes an increase in tatA expression only after induction of protein expression, while the subsequent post-induction analysis revealed lower tatA and tatB expression levels, which correlate with lowered TatA and TatB protein abundance.
The study identified characteristic changes occurring as a result of the production of both a folded and a misfolded protein, but also highlights an exclusive unfolded stress response. Countering and compensating for these changes may result in higher yields of pharmaceutically relevant proteins exported to the periplasm.
由于大肠杆菌的 Twin-arginine translocation(Tat)途径能够转运折叠蛋白,并且具有允许正确折叠的蛋白质易位的校对机制,因此它在将生物制药输送到细胞质周质方面具有很大的潜力。将 Tat 依赖的蛋白分泌与大肠杆菌 CyDisCo 细胞质中二硫键的形成相结合,为生产具有工业挑战性的蛋白提供了一个强大的平台。在这项研究中,我们研究了使用 Tat 信号肽将折叠底物(scFv)输出到周质对大肠杆菌细胞的影响,以及表达无输出能力的错误折叠变体的影响。
当使用 Tat 信号肽表达正确折叠或错误折叠的 scFv 时,细胞生长都会受到抑制。然而,只有错误折叠的 scFv 的产生会导致细胞聚集和形成包含体。综合蛋白质组学分析表明,重组蛋白过表达和错误折叠蛋白积累这两种情况都会下调负责蛋白折叠和插入膜的膜转运蛋白,而上调参与去除聚集物的伴侣和蛋白酶的产生。这些情况还会对转录因子和参与 DNA 复制的蛋白的产生产生不同的影响。观察到的最明显的应激反应是抗原 43 水平升高导致的细胞聚集。最后,Tat 依赖的分泌仅在蛋白表达诱导后才会导致 tatA 的表达增加,而随后的诱导后分析显示 tatA 和 tatB 的表达水平较低,这与 TatA 和 TatB 蛋白丰度降低相关。
该研究鉴定了由于生产折叠和错误折叠的蛋白而产生的特征变化,但也突出了一种独特的未折叠应激反应。对抗和补偿这些变化可能会导致更多的具有药用价值的蛋白被分泌到周质中。