Laboratory of Hybrid Materials, Department of Chemistry , Federal University of São Paulo , Diadema 04021-001 , Brazil.
Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Department of Chemistry FFCLRP , São Paulo University , Ribeirão Preto , Brazil.
Mol Pharm. 2019 Mar 4;16(3):1009-1024. doi: 10.1021/acs.molpharmaceut.8b01001. Epub 2019 Feb 11.
Despite advances in cancer therapies, glioblastoma multiforme treatment remains inefficient due to the brain-blood barrier (BBB) inhibitory activity and to the low temozolomide (TMZ) chemotherapeutic selectivity. To improve therapeutic outcomes, in this work we propose two strategies, (i) photodynamic therapy (PDT) as adjuvant treatment and (ii) engineering of multifunctional theranostic/targeted nanoparticles ( m-NPs) that integrate biotin as a targeting moiety with rhodamine-B as a theranostic agent in pluronic P85/F127 copolymers. These smart m-NPs can surmount the BBB and coencapsulate multiple cargoes under optimized conditions. Overall, the present study conducts a rational m-NP design, characterization, and optimizes the formulation conditions. Confocal microscopy studies on T98-G, U87-MG, and U343 glioblastoma cells and on NIH-3T3 normal fibroblast cells show that the m-NPs and the encapsulated drugs are selectively taken up by tumor cells presenting a broad intracellular distribution. The formulations display no toxicity in the absence of light and are not toxic to healthy cells, but they exert a robust synergic action in cancer cells in the case of concomitant PDT/TMZ treatment, especially at low TMZ concentrations and higher light doses, as demonstrated by nonlinear dose-effect curves based on the Chou-Talalay method. The results evidenced different mechanisms of action related to the disjoint cell cycle phases at the optimal PDT/TMZ ratio. This effect favors synergism between the PDT and the chemotherapy with TMZ, enhances the antiproliferative effect, and overcomes cross-resistance mechanisms. These results point out that m-NP-based PDT adjuvant therapy is a promising strategy to improve TMZ-based glioblastoma multiforme treatments.
尽管癌症治疗取得了进展,但由于血脑屏障 (BBB) 的抑制活性和替莫唑胺 (TMZ) 化疗的低选择性,多形性胶质母细胞瘤的治疗仍然效率低下。为了改善治疗效果,在这项工作中,我们提出了两种策略,(i) 光动力疗法 (PDT) 作为辅助治疗,(ii) 多功能治疗/靶向纳米粒子 (m-NPs) 的工程,该纳米粒子将生物素作为靶向部分与罗丹明-B 整合在 pluronic P85/F127 共聚物中作为治疗剂。这些智能 m-NPs 可以克服 BBB 并在优化条件下共包封多种货物。总体而言,本研究进行了合理的 m-NP 设计、表征,并优化了配方条件。共聚焦显微镜研究表明,m-NPs 和包封的药物可被 T98-G、U87-MG 和 U343 胶质母细胞瘤细胞以及 NIH-3T3 正常成纤维细胞选择性摄取,具有广泛的细胞内分布。在没有光的情况下,这些制剂没有毒性,对健康细胞也没有毒性,但在同时进行 PDT/TMZ 治疗的情况下,对癌细胞具有强大的协同作用,特别是在低 TMZ 浓度和更高的光剂量下,这可以根据 Chou-Talalay 方法基于非线性剂量效应曲线来证明。结果表明,与最佳 PDT/TMZ 比值相关的不同作用机制与细胞周期不相关的阶段有关。这种效应有利于 PDT 与 TMZ 化疗之间的协同作用,增强了抗增殖作用,并克服了交叉耐药机制。这些结果表明,基于 m-NP 的 PDT 辅助治疗是改善基于 TMZ 的多形性胶质母细胞瘤治疗的有前途的策略。