Suppr超能文献

惩罚性监督星图:在流感特异性CD4+ T细胞中的示例应用

Penalized Supervised Star Plots: Example Application in Influenza-Specific CD4+ T Cells.

作者信息

Holmes Tyson H, Subrahmanyam Priyanka B, Wang Weiqi, Maecker Holden T

机构信息

1 Department of Medicine, Stanford University School of Medicine, Stanford, California.

2 Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California.

出版信息

Viral Immunol. 2019 Mar;32(2):102-109. doi: 10.1089/vim.2018.0046. Epub 2019 Jan 30.

Abstract

An immune cell's phenotype expresses through its high-dimensional marker signature. Cluster analyses of data from high-throughput mass and flow cytometry marker panels permit discovery of previously undescribed immune cell phenotypes. Impactful reporting of new phenotypes demands low-dimensional visualization tools that preserve with integrity phenotypes' original high-dimensional structure. For this purpose, we introduce penalized supervised star plots. As designed and as we demonstrate, penalized supervised star plots are two-dimensional projections that tend to preserve separation of clusters as well as information on the relative contributions of various markers in differentiating phenotypes. The new method is robust to markers that do not differentiate phenotypes at all, as shown in a challenge data set. Results include comparison with other popular procedures. Penalized supervised star plots incorporate cross-validation to permit portability of estimated optimal projections to new samples. Supervised star plots are further illustrated with a featured influenza-specific T cell data set as well as a peripheral blood mononuclear cell phenotyping data set.

摘要

免疫细胞的表型通过其高维标记特征来表达。对来自高通量质谱和流式细胞术标记面板的数据进行聚类分析,有助于发现以前未描述过的免疫细胞表型。要对新表型进行有影响力的报告,就需要低维可视化工具,这些工具要能完整保留表型的原始高维结构。为此,我们引入了惩罚监督星图。如设计及我们所展示的那样,惩罚监督星图是二维投影,倾向于保留聚类的分离情况以及各种标记在区分表型时的相对贡献信息。如在一个挑战数据集中所示,新方法对完全不能区分表型的标记具有鲁棒性。结果包括与其他常用程序的比较。惩罚监督星图纳入了交叉验证,以便将估计的最佳投影应用于新样本。通过一个特定流感T细胞数据集以及一个外周血单核细胞表型数据集进一步说明了监督星图。

相似文献

1
Penalized Supervised Star Plots: Example Application in Influenza-Specific CD4+ T Cells.
Viral Immunol. 2019 Mar;32(2):102-109. doi: 10.1089/vim.2018.0046. Epub 2019 Jan 30.
4
Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery.
Front Immunol. 2021 Apr 30;12:633910. doi: 10.3389/fimmu.2021.633910. eCollection 2021.
5
Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation.
J Allergy Clin Immunol. 2016 Jun;137(6):1809-1821.e12. doi: 10.1016/j.jaci.2016.01.024. Epub 2016 Apr 1.
8
Flow Plex-A tool for unbiased comprehensive flow cytometry data analysis.
Immun Inflamm Dis. 2019 Sep;7(3):105-111. doi: 10.1002/iid3.246. Epub 2019 Apr 23.
9
Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry.
Methods Mol Biol. 2015;1346:99-113. doi: 10.1007/978-1-4939-2987-0_8.
10
Statistical file matching of flow cytometry data.
J Biomed Inform. 2011 Aug;44(4):663-76. doi: 10.1016/j.jbi.2011.03.004. Epub 2011 Mar 21.

引用本文的文献

1
Decreased levels and function of dendritic cells in blood and airways predict COVID-19 severity.
Clin Transl Immunology. 2025 Mar 3;14(3):e70026. doi: 10.1002/cti2.70026. eCollection 2025.
3
Mass Cytometry Defines Virus-Specific CD4 T Cells in Influenza Vaccination.
Immunohorizons. 2020 Dec 11;4(12):774-788. doi: 10.4049/immunohorizons.1900097.
4
Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy.
Clin Immunol. 2020 Oct;219:108568. doi: 10.1016/j.clim.2020.108568. Epub 2020 Aug 9.

本文引用的文献

1
Intracellular Cytokine Staining on PBMCs Using CyTOF™ Mass Cytometry.
Bio Protoc. 2015 Jan 5;5(1). doi: 10.21769/BioProtoc.1370.
2
1,500 scientists lift the lid on reproducibility.
Nature. 2016 May 26;533(7604):452-4. doi: 10.1038/533452a.
3
Automated identification of stratifying signatures in cellular subpopulations.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7. doi: 10.1073/pnas.1408792111. Epub 2014 Jun 16.
4
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
Nat Biotechnol. 2013 Jun;31(6):545-52. doi: 10.1038/nbt.2594. Epub 2013 May 19.
6
Vectorized Radviz and its application to multiple cluster datasets.
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1444-51. doi: 10.1109/TVCG.2008.173.
7
adegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics. 2008 Jun 1;24(11):1403-5. doi: 10.1093/bioinformatics/btn129. Epub 2008 Apr 8.
8
CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens.
Eur J Immunol. 2001 Aug;31(8):2512-20. doi: 10.1002/1521-4141(200108)31:8<2512::aid-immu2512>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验