Suppr超能文献

临床环境中无监督的流式细胞术数据分析可捕获细胞多样性并允许进行群体发现。

Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery.

机构信息

Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.

Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.

出版信息

Front Immunol. 2021 Apr 30;12:633910. doi: 10.3389/fimmu.2021.633910. eCollection 2021.

Abstract

Data obtained with cytometry are increasingly complex and their interrogation impacts the type and quality of knowledge gained. Conventional supervised analyses are limited to pre-defined cell populations and do not exploit the full potential of data. Here, in the context of a clinical trial of cancer patients treated with radiotherapy, we performed longitudinal flow cytometry analyses to identify multiple distinct cell populations in circulating whole blood. We cross-compared the results from state-of-the-art recommended supervised analyses with results from MegaClust, a high-performance data-driven clustering algorithm allowing fast and robust identification of cell-type populations. Ten distinct cell populations were accurately identified by supervised analyses, including main T, B, dendritic cell (DC), natural killer (NK) and monocytes subsets. While all ten subsets were also identified with MegaClust, additional cell populations were revealed (e.g. CD4HLA-DR and NKT-like subsets), and DC profiling was enriched by the assignment of additional subset-specific markers. Comparison between transcriptomic profiles of purified DC populations and publicly available datasets confirmed the accuracy of the unsupervised clustering algorithm and demonstrated its potential to identify rare and scarcely described cell subsets. Our observations show that data-driven analyses of cytometry data significantly enrich the amount and quality of knowledge gained, representing an important step in refining the characterization of immune responses.

摘要

流式细胞术获得的数据越来越复杂,其分析结果会影响所获得知识的类型和质量。传统的监督分析方法仅限于预先定义的细胞群体,不能充分发挥数据的潜力。在此,我们在一项对接受放射治疗的癌症患者的临床试验中,对循环全血进行了纵向流式细胞术分析,以鉴定出多个不同的循环血细胞群体。我们将最先进的推荐监督分析结果与 MegaClust 的结果进行了交叉比较,MegaClust 是一种高性能的数据驱动聚类算法,能够快速、稳健地识别细胞类型群体。通过监督分析准确鉴定出了 10 个不同的细胞群体,包括主要的 T、B、树突状细胞(DC)、自然杀伤(NK)和单核细胞亚群。尽管所有 10 个亚群都可以用 MegaClust 识别,但还揭示了其他细胞群体(例如 CD4HLA-DR 和 NKT 样亚群),并通过分配额外的亚群特异性标记物来丰富 DC 分析。纯化的 DC 群体的转录组谱与公开可用数据集之间的比较证实了无监督聚类算法的准确性,并证明了其识别稀有和描述甚少的细胞亚群的潜力。我们的观察结果表明,流式细胞术数据分析的驱动分析显著增加了所获得知识的数量和质量,是完善免疫反应特征描述的重要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f0c/8119773/02980f94b627/fimmu-12-633910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验