Suppr超能文献

[运用聚类分析和逻辑回归评估遗忘型轻度认知障碍患者患阿尔茨海默病的风险]

[The use of cluster analysis and logistic regression for assessing the risk of Alzheimer's disease in patients with mild cognitive impairment, amnestic type].

作者信息

Simonov A N, Klyushnik T P, Androsova L V, Mikhailova N M

机构信息

Mental Health Research Center, Moscow, Russia.

出版信息

Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118(12):40-43. doi: 10.17116/jnevro201811812140.

Abstract

AIM

The evaluation of the risk of Alzheimer disease (AD) in patients with cognitive impairment, amnestic type (aMCI) on the basis of cluster analysis and logistic regression with the use of such markers of inflammation as enzymatic activity of leukocyte elastase (LE) and the functional activity of α1-proteinase inhibitor (α1-PI).

MATERIAL AND METHODS

The study object of statistical analysis was the database, including the results of LE activity and functional α1-PI activity in blood plasma of 78 outpatients with aMCI (25 men and 53 women, aged 44 to 89 years (69.1±9.95).

RESULTS AND CONCLUSION

Clustering by k-means and classification by logistic regression indicate a high probability of AD in patients with aMCI depending on the activity of LE and α1-PI in blood plasma. The total coincidence of objects included in the clusters and in the AD risk group was 94%. The high coincidence of two different methods of grouping confirms the previously stated notion of the possibility of identifying patients with the high risk of AD among patients with aMCI by the activity of LE and α1-PI in the blood.

摘要

目的

基于聚类分析和逻辑回归,利用白细胞弹性蛋白酶(LE)的酶活性和α1-蛋白酶抑制剂(α1-PI)的功能活性等炎症标志物,评估遗忘型轻度认知障碍(aMCI)患者患阿尔茨海默病(AD)的风险。

材料与方法

统计分析的研究对象是一个数据库,其中包含78例aMCI门诊患者血浆中LE活性和功能性α1-PI活性的检测结果(25名男性和53名女性,年龄44至89岁(69.1±9.95))。

结果与结论

通过k均值聚类和逻辑回归分类表明,根据血浆中LE和α1-PI的活性,aMCI患者患AD的可能性很高。聚类中包含的对象与AD风险组中的对象总符合率为94%。两种不同分组方法的高符合率证实了之前提出的观点,即通过血液中LE和α1-PI的活性可以在aMCI患者中识别出患AD高风险的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验