Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
Phys Chem Chem Phys. 2019 Feb 13;21(7):3849-3856. doi: 10.1039/c8cp07060a.
Polycyclic aromatic hydrocarbon (PAH) dimers are important intermediates in combustion and soot formation. The scattering dynamics of gaseous molecules colliding with PAH dimers and the subsequent PAH dimer stability are investigated by performing molecular dynamics (MD) simulations. Effects of properties of the surrounding gaseous molecules and PAH dimers as well as temperature are investigated in this study. Depending on the residence time of N2 molecules trapped by the PAH dimers, two scattering types, that is, specular scattering and inelastic scattering, have been observed, which is correlated to the temperature and the type of the PAH dimer. Specifically, specular scattering preferentially takes place at high temperatures on small PAH dimers, while inelastic scattering tends to happen at low temperatures on large PAH dimers. During collision, energy transfer between the gaseous molecule and the PAH dimer changes the thermodynamic stability of the PAH dimer. Statistical analysis indicates that the decomposition rate of a PAH dimer to PAH monomers is sensitive to temperature and the PAH dimer type. Furthermore, effects of the gaseous molecule type on the PAH dimer stability are considered. The molecular mass of the colliding gaseous molecule is a key factor in determining the PAH dimer stability, as heavier gaseous molecules are more effective in promoting the PAH dimer decomposition. Results from this study indicate that collisions with gaseous molecules decrease the PAH dimer stability, while increasing the PAH dimer size and decreasing the collision temperature both decrease the decomposition rate of the PAH dimer.
多环芳烃(PAH)二聚体是燃烧和烟尘形成过程中的重要中间体。通过进行分子动力学(MD)模拟,研究了气态分子与 PAH 二聚体碰撞的散射动力学以及随后的 PAH 二聚体稳定性。本研究考察了周围气态分子和 PAH 二聚体性质以及温度的影响。根据被 PAH 二聚体捕获的 N2 分子的停留时间,观察到两种散射类型,即镜面散射和非弹性散射,这与温度和 PAH 二聚体的类型有关。具体而言,在小的 PAH 二聚体上,镜面散射在高温下优先发生,而在大的 PAH 二聚体上,非弹性散射在低温下更易发生。在碰撞过程中,气态分子与 PAH 二聚体之间的能量转移改变了 PAH 二聚体的热力学稳定性。统计分析表明,PAH 二聚体分解为 PAH 单体的速率对温度和 PAH 二聚体类型敏感。此外,还考虑了气态分子类型对 PAH 二聚体稳定性的影响。碰撞气态分子的分子量是决定 PAH 二聚体稳定性的关键因素,因为较重的气态分子更有效地促进 PAH 二聚体分解。本研究的结果表明,与气态分子的碰撞会降低 PAH 二聚体的稳定性,而增加 PAH 二聚体的尺寸和降低碰撞温度都会降低 PAH 二聚体的分解速率。