Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Bioinformatics. 2019 Sep 15;35(18):3348-3356. doi: 10.1093/bioinformatics/btz058.
MOTIVATION: Cancer subtypes were usually defined based on molecular characterization of single omic data. Increasingly, measurements of multiple omic profiles for the same cohort are available. Defining cancer subtypes using multi-omic data may improve our understanding of cancer, and suggest more precise treatment for patients. RESULTS: We present NEMO (NEighborhood based Multi-Omics clustering), a novel algorithm for multi-omics clustering. Importantly, NEMO can be applied to partial datasets in which some patients have data for only a subset of the omics, without performing data imputation. In extensive testing on ten cancer datasets spanning 3168 patients, NEMO achieved results comparable to the best of nine state-of-the-art multi-omics clustering algorithms on full data and showed an improvement on partial data. On some of the partial data tests, PVC, a multi-view algorithm, performed better, but it is limited to two omics and to positive partial data. Finally, we demonstrate the advantage of NEMO in detailed analysis of partial data of AML patients. NEMO is fast and much simpler than existing multi-omics clustering algorithms, and avoids iterative optimization. AVAILABILITY AND IMPLEMENTATION: Code for NEMO and for reproducing all NEMO results in this paper is in github: https://github.com/Shamir-Lab/NEMO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
动机:癌症亚型通常基于单一组学数据的分子特征定义。越来越多的同一队列的多种组学数据的测量结果可供使用。使用多组学数据定义癌症亚型可以提高我们对癌症的认识,并为患者提供更精确的治疗方法。
结果:我们提出了 NEMO(基于邻域的多组学聚类),这是一种用于多组学聚类的新算法。重要的是,NEMO 可以应用于部分数据集,其中一些患者只有部分组学数据,而无需进行数据插补。在对跨越 3168 名患者的十个癌症数据集的广泛测试中,NEMO 在完整数据上的表现可与九种最先进的多组学聚类算法中的最佳算法相媲美,并在部分数据上表现出了改进。在一些部分数据测试中,多视图算法 PVC 的表现更好,但它仅限于两种组学和正偏数据。最后,我们展示了 NEMO 在 AML 患者部分数据的详细分析中的优势。NEMO 速度快,比现有的多组学聚类算法简单得多,并且避免了迭代优化。
可用性和实现:NEMO 的代码以及本文中所有 NEMO 结果的重现都可以在 github 上找到:https://github.com/Shamir-Lab/NEMO。
补充信息:补充数据可在生物信息学在线获得。
Bioinformatics. 2019-9-15
IEEE/ACM Trans Comput Biol Bioinform. 2022
Bioinformatics. 2021-8-25
BMC Bioinformatics. 2021-7-6
Bioinformatics. 2018-12-1
Nucleic Acids Res. 2018-11-16
Comput Biol Med. 2023-9
Bioinformatics. 2022-6-27
Bioinformatics. 2021-12-11
Clin Epigenetics. 2025-7-30
Mol Ther Nucleic Acids. 2025-4-2
Sci Data. 2025-5-30
Int J Mol Sci. 2025-4-30
Semin Nephrol. 2024-11
Nucleic Acids Res. 2018-11-16
Nat Biotechnol. 2018-1-10
Genome Res. 2017-10-24
Trends Mol Med. 2017-10
Front Genet. 2017-6-16
Breast Cancer Res. 2016-7-7
Lancet Oncol. 2016-2