文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NEMO:通过整合部分多组学数据进行癌症亚型分类。

NEMO: cancer subtyping by integration of partial multi-omic data.

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3348-3356. doi: 10.1093/bioinformatics/btz058.


DOI:10.1093/bioinformatics/btz058
PMID:30698637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6748715/
Abstract

MOTIVATION: Cancer subtypes were usually defined based on molecular characterization of single omic data. Increasingly, measurements of multiple omic profiles for the same cohort are available. Defining cancer subtypes using multi-omic data may improve our understanding of cancer, and suggest more precise treatment for patients. RESULTS: We present NEMO (NEighborhood based Multi-Omics clustering), a novel algorithm for multi-omics clustering. Importantly, NEMO can be applied to partial datasets in which some patients have data for only a subset of the omics, without performing data imputation. In extensive testing on ten cancer datasets spanning 3168 patients, NEMO achieved results comparable to the best of nine state-of-the-art multi-omics clustering algorithms on full data and showed an improvement on partial data. On some of the partial data tests, PVC, a multi-view algorithm, performed better, but it is limited to two omics and to positive partial data. Finally, we demonstrate the advantage of NEMO in detailed analysis of partial data of AML patients. NEMO is fast and much simpler than existing multi-omics clustering algorithms, and avoids iterative optimization. AVAILABILITY AND IMPLEMENTATION: Code for NEMO and for reproducing all NEMO results in this paper is in github: https://github.com/Shamir-Lab/NEMO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:癌症亚型通常基于单一组学数据的分子特征定义。越来越多的同一队列的多种组学数据的测量结果可供使用。使用多组学数据定义癌症亚型可以提高我们对癌症的认识,并为患者提供更精确的治疗方法。

结果:我们提出了 NEMO(基于邻域的多组学聚类),这是一种用于多组学聚类的新算法。重要的是,NEMO 可以应用于部分数据集,其中一些患者只有部分组学数据,而无需进行数据插补。在对跨越 3168 名患者的十个癌症数据集的广泛测试中,NEMO 在完整数据上的表现可与九种最先进的多组学聚类算法中的最佳算法相媲美,并在部分数据上表现出了改进。在一些部分数据测试中,多视图算法 PVC 的表现更好,但它仅限于两种组学和正偏数据。最后,我们展示了 NEMO 在 AML 患者部分数据的详细分析中的优势。NEMO 速度快,比现有的多组学聚类算法简单得多,并且避免了迭代优化。

可用性和实现:NEMO 的代码以及本文中所有 NEMO 结果的重现都可以在 github 上找到:https://github.com/Shamir-Lab/NEMO。

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
NEMO: cancer subtyping by integration of partial multi-omic data.

Bioinformatics. 2019-9-15

[2]
Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[3]
Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.

Bioinformatics. 2021-8-25

[4]
Consensus clustering applied to multi-omics disease subtyping.

BMC Bioinformatics. 2021-7-6

[5]
Robust clustering of noisy high-dimensional gene expression data for patients subtyping.

Bioinformatics. 2018-12-1

[6]
Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.

Math Biosci Eng. 2023-11-27

[7]
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.

Nucleic Acids Res. 2018-11-16

[8]
Multi-omics clustering for cancer subtyping based on latent subspace learning.

Comput Biol Med. 2023-9

[9]
Deep structure integrative representation of multi-omics data for cancer subtyping.

Bioinformatics. 2022-6-27

[10]
Cancer subtype identification by consensus guided graph autoencoders.

Bioinformatics. 2021-12-11

引用本文的文献

[1]
A review on multi-omics integration for aiding study design of large scale TCGA cancer datasets.

BMC Genomics. 2025-8-22

[2]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[3]
Retrotransposon methylation profiles and survival in Black women with high-grade serous ovarian carcinoma.

Clin Epigenetics. 2025-7-30

[4]
CLCluster: A redundancy-reduction contrastive learning-based clustering method of cancer subtype based on multi-omics data.

Mol Ther Nucleic Acids. 2025-4-2

[5]
MLOmics: Cancer Multi-Omics Database for Machine Learning.

Sci Data. 2025-5-30

[6]
EMitool: Explainable Multi-Omics Integration for Disease Subtyping.

Int J Mol Sci. 2025-4-30

[7]
Generalized Probabilistic Canonical Correlation Analysis for Multi-modal Data Integration with Full or Partial Observations.

ArXiv. 2025-4-15

[8]
A comprehensive review of cancer survival prediction using multi-omics integration and clinical variables.

Brief Bioinform. 2025-3-4

[9]
Multi-Omics Integration in Nephrology: Advances, Challenges, and Future Directions.

Semin Nephrol. 2024-11

[10]
miss-SNF: a multimodal patient similarity network integration approach to handle completely missing data sources.

Bioinformatics. 2025-3-29

本文引用的文献

[1]
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.

Nucleic Acids Res. 2018-11-16

[2]
Precision oncology in the age of integrative genomics.

Nat Biotechnol. 2018-1-10

[3]
A novel approach for data integration and disease subtyping.

Genome Res. 2017-10-24

[4]
Precision Oncology: The Road Ahead.

Trends Mol Med. 2017-10

[5]
More Is Better: Recent Progress in Multi-Omics Data Integration Methods.

Front Genet. 2017-6-16

[6]
A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.

Biostatistics. 2018-1-1

[7]
Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.

Breast Cancer Res. 2016-7-7

[8]
Precision oncology: origins, optimism, and potential.

Lancet Oncol. 2016-2

[9]
Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.

BMC Genomics. 2015-12-1

[10]
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery.

Bioinformatics. 2015-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索