文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于共识引导图自编码器的癌症亚型识别。

Cancer subtype identification by consensus guided graph autoencoders.

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

出版信息

Bioinformatics. 2021 Dec 11;37(24):4779-4786. doi: 10.1093/bioinformatics/btab535.


DOI:10.1093/bioinformatics/btab535
PMID:34289034
Abstract

MOTIVATION: Cancer subtype identification aims to divide cancer patients into subgroups with distinct clinical phenotypes and facilitate the development for subgroup specific therapies. The massive amount of multi-omics datasets accumulated in the public databases have provided unprecedented opportunities to fulfill this task. As a result, great computational efforts have been made to accurately identify cancer subtypes via integrative analysis of these multi-omics datasets. RESULTS: In this article, we propose a Consensus Guided Graph Autoencoder (CGGA) to effectively identify cancer subtypes. First, we learn for each omic a new feature matrix by using graph autoencoders, where both structure information and node features can be effectively incorporated during the learning process. Second, we learn a set of omic-specific similarity matrices together with a consensus matrix based on the features obtained in the first step. The learned omic-specific similarity matrices are then fed back to the graph autoencoders to guide the feature learning. By iterating the two steps above, our method obtains a final consensus similarity matrix for cancer subtyping. To comprehensively evaluate the prediction performance of our method, we compare CGGA with several approaches ranging from general-purpose multi-view clustering algorithms to multi-omics-specific integrative methods. The experimental results on both generic datasets and cancer datasets confirm the superiority of our method. Moreover, we validate the effectiveness of our method in leveraging multi-omics datasets to identify cancer subtypes. In addition, we investigate the clinical implications of the obtained clusters for glioblastoma and provide new insights into the treatment for patients with different subtypes. AVAILABILITYAND IMPLEMENTATION: The source code of our method is freely available at https://github.com/alcs417/CGGA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:癌症亚型识别旨在将癌症患者分为具有不同临床表型的亚组,并促进亚组特异性治疗方法的发展。公共数据库中积累的大量多组学数据集为完成这项任务提供了前所未有的机会。因此,为了通过整合分析这些多组学数据集来准确识别癌症亚型,已经进行了大量的计算工作。

结果:在本文中,我们提出了一种共识引导图自动编码器(CGGA)来有效地识别癌症亚型。首先,我们使用图自动编码器为每个组学学习一个新的特征矩阵,在学习过程中可以有效地结合结构信息和节点特征。其次,我们基于第一步获得的特征学习一组组学特定的相似性矩阵和一个共识矩阵。然后将学习到的组学特定相似性矩阵反馈给图自动编码器,以指导特征学习。通过迭代上述两个步骤,我们的方法得到了用于癌症亚分型的最终共识相似性矩阵。为了全面评估我们方法的预测性能,我们将 CGGA 与从通用多视图聚类算法到多组学特定整合方法的几种方法进行了比较。在通用数据集和癌症数据集上的实验结果证实了我们方法的优越性。此外,我们验证了我们的方法利用多组学数据集识别癌症亚型的有效性。此外,我们研究了获得的聚类对胶质母细胞瘤的临床意义,并为不同亚型的患者提供了新的治疗思路。

可用性和实现:我们方法的源代码可在 https://github.com/alcs417/CGGA 上免费获取。

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
Cancer subtype identification by consensus guided graph autoencoders.

Bioinformatics. 2021-12-11

[2]
Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.

Math Biosci Eng. 2023-11-27

[3]
Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.

Comput Biol Med. 2022-9

[4]
Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[5]
GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.

Bioinformatics. 2022-5-26

[6]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[7]
Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.

Bioinformatics. 2021-8-25

[8]
Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.

Brief Bioinform. 2023-1-19

[9]
Multiview Robust Graph-Based Clustering for Cancer Subtype Identification.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[10]
MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism.

Front Genet. 2022-3-21

引用本文的文献

[1]
DeepGraphMut: a graph-based deep learning method for cancer prognosis using somatic mutation profile.

Brief Bioinform. 2025-7-2

[2]
Heterogeneity-preserving discriminative feature selection for disease-specific subtype discovery.

Nat Commun. 2025-4-16

[3]
Heterogeneity-Preserving Discriminative Feature Selection for Disease-Specific Subtype Discovery.

bioRxiv. 2025-3-5

[4]
A classification method of gastric cancer subtype based on residual graph convolution network.

Front Genet. 2023-1-4

[5]
NESM: a network embedding method for tumor stratification by integrating multi-omics data.

G3 (Bethesda). 2022-11-4

[6]
MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism.

Front Genet. 2022-3-21

[7]
Inferring Latent Disease-lncRNA Associations by Label-Propagation Algorithm and Random Projection on a Heterogeneous Network.

Front Genet. 2022-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索