Holst Klaus Kähler, Budtz-Jørgensen Esben
Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, entr. B, P.O.Box 2099, DK-1014 Copenhagen K, Denmark, Neurobiology Research Unit, Rigshospitalet, Copenhagen University Hospital, Juliane Maries Vej 28, building 6931, 3rd floor, DK-2100 Copenhagen, Denmark, and Maersk, Esplanaden 50, DK-1098 Copenhagen K, Denmark.
Department of Biostatistics, University of Copenhagen. Øster Farimagsgade 5, entr. B, P.O.Box 2099, DK-1014 Copenhagen K, Denmark.
Biostatistics. 2020 Oct 1;21(4):676-691. doi: 10.1093/biostatistics/kxy082.
Applications of structural equation models (SEMs) are often restricted to linear associations between variables. Maximum likelihood (ML) estimation in non-linear models may be complex and require numerical integration. Furthermore, ML inference is sensitive to distributional assumptions. In this article, we introduce a simple two-stage estimation technique for estimation of non-linear associations between latent variables. Here both steps are based on fitting linear SEMs: first a linear model is fitted to data on the latent predictor and terms describing the non-linear effect are predicted by their conditional means. In the second step, the predictions are included in a linear model for the latent outcome variable. We show that this procedure is consistent and identifies its asymptotic distribution. We also illustrate how this framework easily allows the association between latent variables to be modeled using restricted cubic splines, and we develop a modified estimator which is robust to non-normality of the latent predictor. In a simulation study, we compare the proposed method to MLE and alternative two-stage estimation techniques.
结构方程模型(SEMs)的应用通常局限于变量之间的线性关联。非线性模型中的最大似然(ML)估计可能很复杂,需要数值积分。此外,ML推断对分布假设很敏感。在本文中,我们介绍一种简单的两阶段估计技术,用于估计潜在变量之间的非线性关联。这里的两个步骤都基于拟合线性结构方程模型:首先将线性模型拟合到潜在预测变量的数据上,并通过其条件均值预测描述非线性效应的项。在第二步中,将这些预测纳入潜在结果变量的线性模型中。我们表明该过程是一致的,并确定其渐近分布。我们还说明了这个框架如何轻松地允许使用受限立方样条对潜在变量之间的关联进行建模,并且我们开发了一种对潜在预测变量的非正态性具有稳健性的修正估计器。在一项模拟研究中,我们将所提出的方法与最大似然估计(MLE)和替代的两阶段估计技术进行比较。