Suppr超能文献

模型隐含工具变量(MIIVs):对结构方程建模的另一种取向。

Model Implied Instrumental Variables (MIIVs): An Alternative Orientation to Structural Equation Modeling.

机构信息

a Departments of Psychology and Neuroscience and Sociology , University of North Carolina , Chapel Hill , NC , USA.

出版信息

Multivariate Behav Res. 2019 Jan-Feb;54(1):31-46. doi: 10.1080/00273171.2018.1483224. Epub 2018 Sep 17.

Abstract

Few dispute that our models are approximations to reality. Yet when it comes to structural equation models (SEMs), we use estimators that assume true models (e.g. maximum likelihood) and that can create biased estimates when the model is inexact. This article presents an overview of the Model Implied Instrumental Variable (MIIV) approach to SEMs from Bollen (1996). The MIIV estimator using Two Stage Least Squares (2SLS), MIIV-2SLS, has greater robustness to structural misspecifications than system wide estimators. In addition, the MIIV-2SLS estimator is asymptotically distribution free. Furthermore, MIIV-2SLS has equation-based overidentification tests that can help pinpoint misspecifications. Beyond these features, the MIIV approach has other desirable qualities. MIIV methods apply to higher order factor analyses, categorical measures, growth curve models, dynamic factor analysis, and nonlinear latent variables. Finally, MIIV-2SLS permits researchers to estimate and test only the latent variable model or any other subset of equations. In addition, other MIIV estimators beyond 2SLS are available. Despite these promising features, research is needed to better understand its performance under a variety of conditions that represent empirical applications. Empirical and simulation examples in the article illustrate the MIIV orientation to SEMs and highlight an R package MIIVsem that implements MIIV-2SLS.

摘要

几乎没有人质疑我们的模型是对现实的近似。然而,当涉及到结构方程模型(SEM)时,我们使用的估计器假设真实模型(例如最大似然),并且当模型不精确时,这些估计器可能会产生有偏差的估计。本文概述了 Bollen(1996)提出的 SEM 的模型隐含工具变量(MIIV)方法。使用两阶段最小二乘法(2SLS)的 MIIV 估计器,MIIV-2SLS 比系统范围的估计器对结构误设定具有更大的稳健性。此外,MIIV-2SLS 估计器是渐近无分布的。此外,MIIV-2SLS 具有基于方程的过度识别检验,可以帮助确定误设定。除了这些特点外,MIIV 方法还有其他可取的性质。MIIV 方法适用于高阶因子分析、类别测量、增长曲线模型、动态因子分析和非线性潜在变量。最后,MIIV-2SLS 允许研究人员仅估计和测试潜在变量模型或任何其他方程组的子集。此外,还有其他超越 2SLS 的 MIIV 估计器。尽管具有这些有希望的特点,但仍需要进行研究,以更好地了解在代表实证应用的各种条件下的性能。本文中的实证和模拟示例说明了 MIIV 对 SEM 的方向,并突出了一个实现 MIIV-2SLS 的 R 包 MIIVsem。

相似文献

引用本文的文献

7
When Good Loadings Go Bad: Robustness in Factor Analysis.当良好载荷变差时:因子分析中的稳健性
Struct Equ Modeling. 2020;27(4):515-524. doi: 10.1080/10705511.2019.1691005. Epub 2019 Nov 22.

本文引用的文献

1
tetrad: A Set of Stata Commands for Confirmatory Tetrad Analysis.四元组:一组用于验证性四元组分析的Stata命令。
Struct Equ Modeling. 2016;23(6):921-930. doi: 10.1080/10705511.2016.1202771. Epub 2016 Jul 27.
5
Structural Models and the Art of Approximation.结构模型与逼近艺术。
Perspect Psychol Sci. 2010 Nov;5(6):675-86. doi: 10.1177/1745691610388766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验