Division of Organic Chemistry and the Academy of Scientific and Industrial Research , CSIR-National Chemical Laboratory , Pune 411008 , India.
Acc Chem Res. 2019 Feb 19;52(2):437-446. doi: 10.1021/acs.accounts.8b00557. Epub 2019 Jan 30.
It is far more difficult to recognize and predict the chemical reactions that a molecule of an organic compound can undergo in crystalline (solid) state as compared to the solution state (the "organic functional group" approach), since the published data on solid-state structure-reactivity investigations and correlations are scant. The discovery of the first intermolecular acyl-transfer reaction in molecular crystals of racemic 2,4-di- O-benzoyl- myo-inositol-1,3,5-orthoformate (DiBz) during our attempts to develop methods for the synthesis of phosphoinositols, motivated us to find other molecular crystals capable of supporting similar reactions. Small changes to the molecular structure of DiBz yielded analogues with different crystal structures which showed varying degrees of acyl transfer reactivity as compared to the crystals of DiBz. A systematic investigation of the structures, polymorphism, cocrystallization behavior, and the corresponding reactivity of these crystals allowed us to correlate the acyl transfer reactivity with their structures and inherent noncovalent interactions and provided crucial insights into the mechanism of these reactions. Polymorphs or cocrystals of these compounds exhibited dissimilar reactivities due to differences in the molecular conformation and/or arrangements in their crystals. The knowledge of phase transitions between polymorphs enabled us to control and tune the reactivity in the solid state. We could identify three conditions essential for intermolecular acyl transfer: (i) favorable relative geometry of the electrophile (ester C═O) and the nucleophile (OH), (ii) noncovalent interactions (C-H···π) between the reacting molecules which help in maintaining the facility and specificity of the reaction, and (iii) the presence of channels in the lattice which enable propagation of the reaction in the crystal. Based on this supramolecular structure-reactivity correlation, we identified other molecular crystals (composed of molecules of widely different molecular structure from that of DiBz) from a survey of the Cambridge Structural Database (CSD) and predicted their acyl transfer reactivity. The increased availability of user-friendly modern X-ray diffractometers and related software has enabled efficient collection, analysis and interpretation of single crystal X-ray diffraction data, essential for such studies. The rapidly expanding CSD facilitates the identification of crystals with similar structures and reactivity patterns. In a wider perspective, facile reactions in molecular crystals fascinate chemists because these reactions usually exhibit unique product selectivity and have the potential to be developed as sustainable green reactions. We are optimistic that similar approaches for the study of other group transfer reactions in molecular crystals would augment and widen the scope of chemical reactions in molecular crystals in particular and the solid state in general. The ability to predict the reactivity of molecules in their crystals could find applications in organic synthesis, material science and industry. Realization of the involvement of inositol derivatives in cellular processes led to the discovery of cellular signal transduction mechanisms. The ability of inositol derivatives to support facile acyl-transfer reactions in the crystalline state might well have opened a new avenue for research in the area of organic solid-state reactions.
与溶液状态相比,识别和预测有机化合物分子在晶体(固态)状态下可以经历的化学反应要困难得多(“有机官能团”方法),因为有关固态结构-反应性研究和相关性的已发表数据很少。在尝试开发磷酸肌醇合成方法的过程中,我们发现了手性 2,4-二-O-苯甲酰肌醇-1,3,5-原甲酸酯(DiBz)分子晶体中首例分子间酰基转移反应,这激发了我们寻找其他能够支持类似反应的分子晶体。对 DiBz 分子结构进行微小改变,得到了具有不同晶体结构的类似物,与 DiBz 晶体相比,这些类似物表现出不同程度的酰基转移反应性。对这些晶体的结构、多晶型性、共晶化行为和相应的反应性进行系统研究,使我们能够将酰基转移反应性与其结构和固有非共价相互作用相关联,并为这些反应的机制提供了关键见解。这些化合物的多晶型物或共晶由于其晶体中分子构象和/或排列的差异,表现出不同的反应性。对多晶型物之间的相转变的了解使我们能够控制和调节固态中的反应性。我们可以确定三个对分子间酰基转移至关重要的条件:(i)亲电试剂(酯 C═O)和亲核试剂(OH)的有利相对几何形状,(ii)反应分子之间的非共价相互作用(C-H···π)有助于保持反应的便利性和特异性,以及(iii)晶格中存在通道,使反应能够在晶体中传播。基于这种超分子结构-反应相关性,我们从剑桥结构数据库(CSD)的调查中确定了其他分子晶体(由与 DiBz 分子结构截然不同的分子组成),并预测了它们的酰基转移反应性。现代易用型 X 射线衍射仪及相关软件的普及,使高效收集、分析和解释单晶 X 射线衍射数据成为可能,而这对于此类研究至关重要。快速扩展的 CSD 促进了具有相似结构和反应性模式的晶体的识别。从更广泛的角度来看,分子晶体中的易反应吸引了化学家的注意,因为这些反应通常表现出独特的产物选择性,并且有可能作为可持续的绿色反应进行开发。我们乐观地认为,对于分子晶体中其他基团转移反应的研究类似方法将增强和拓宽分子晶体特别是固态中化学反应的范围。预测分子在其晶体中的反应性的能力可能在有机合成、材料科学和工业中得到应用。发现肌醇衍生物参与细胞过程,导致发现了细胞信号转导机制。肌醇衍生物在晶体状态下支持易发生酰基转移反应的能力很可能为有机固态反应领域的研究开辟了新途径。