Suppr超能文献

通过构象空间退火和局部精修进行非序列蛋白质结构比对。

Non-sequential protein structure alignment by conformational space annealing and local refinement.

机构信息

Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, Korea.

School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.

出版信息

PLoS One. 2019 Jan 30;14(1):e0210177. doi: 10.1371/journal.pone.0210177. eCollection 2019.

Abstract

Protein structure alignment is an important tool for studying evolutionary biology and protein modeling. A tool which intensively searches for the globally optimal non-sequential alignments is rarely found. We propose ALIGN-CSA which shows improvement in scores, such as DALI-score, SP-score, SO-score and TM-score over the benchmark set including 286 cases. We performed benchmarking of existing popular alignment scoring functions, where the dependence of the search algorithm was effectively eliminated by using ALIGN-CSA. For the benchmarking, we set the minimum block size to 4 to prevent much fragmented alignments where the biological relevance of small alignment blocks is hard to interpret. With this condition, globally optimal alignments were searched by ALIGN-CSA using the four scoring functions listed above, and TM-score is found to be the most effective in generating alignments with longer match lengths and smaller RMSD values. However, DALI-score is the most effective in generating alignments similar to the manually curated reference alignments, which implies that DALI-score is more biologically relevant score. Due to the high demand on computational resources of ALIGN-CSA, we also propose a relatively fast local refinement method, which can control the minimum block size and whether to allow the reverse alignment. ALIGN-CSA can be used to obtain much improved alignment at the cost of relatively more extensive computation. For faster alignment, we propose a refinement protocol that improves the score of a given alignment obtained by various external tools. All programs are available from http://lee.kias.re.kr.

摘要

蛋白质结构比对是研究进化生物学和蛋白质建模的重要工具。很少有工具能密集地寻找全局最优的非序列比对。我们提出了 ALIGN-CSA,它在 DALI 得分、SP 得分、SO 得分和 TM 得分等指标上都优于包括 286 个案例的基准集。我们对现有的流行对齐评分函数进行了基准测试,通过使用 ALIGN-CSA 有效地消除了搜索算法的依赖性。对于基准测试,我们将最小块大小设置为 4,以防止出现过多碎片化的比对,因为小比对块的生物学相关性很难解释。在这种情况下,我们使用上述四个评分函数通过 ALIGN-CSA 搜索全局最优的比对,发现 TM 得分在生成更长匹配长度和更小 RMSD 值的比对方面最有效。然而,DALI 得分在生成与人工编辑的参考比对相似的比对方面最有效,这意味着 DALI 得分更具有生物学相关性。由于 ALIGN-CSA 对计算资源的要求很高,我们还提出了一种相对较快的局部细化方法,可以控制最小块大小和是否允许反向比对。ALIGN-CSA 可以以相对更多的计算为代价获得改进很多的比对。对于更快的比对,我们提出了一种细化协议,可以提高各种外部工具获得的给定比对的得分。所有程序都可以从 http://lee.kias.re.kr 获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9368/6353097/e037bf808ae7/pone.0210177.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验