Stanković I, Milojević K, Vučurović A, Nikolić D, Krstić B, Bulajić A
Institute of Plant Protection, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia.
Plant Dis. 2015 Feb;99(2):286. doi: 10.1094/PDIS-07-14-0724-PDN.
Carrot (Daucus carota L. subsp. sativus (Hoffm.) Thell., Apiaceae), a widely consumed antioxidant-rich plant, is among the major vegetable crops grown in Serbia, with average annual production of 65,400 tons on approximately 7,000 ha (4). In May 2013, a severe root rot was observed on approximately 20% of cold-stored carrot roots originating from Gospođinci, South Bačka District, Serbia. Symptoms included dry rot of the collar and crown as well as large, brown to dark brown, circular, sunken lesions on the stored roots. Frequently, abundant whitish mycelium was observed covering the surface of the colonized roots. To determine the causal agent, small pieces of infected tissue were surface-disinfested with 2% NaOCl without rinsing, air-dried, and placed on potato dextrose agar. Five single-spore isolates obtained from collar and crown tissue sections, as well as nine isolates from root sections, all formed abundant, cottony white to pale salmon fungal colonies with reddish orange pigment on the reverse surface of the agar medium when grown at 25°C under 12 h of fluorescent light per day. All recovered isolates formed numerous, three- to six-septate, hyaline, needle-like, straight to slightly curved, fusoid macroconidia (30 to 80 × 4 to 5.5 μm, average 58.3 × 4.9 μm, n = 100 spores) each with a tapering apical cell. Microconidia of all isolates were generally scarce, two- to four-septate, spindle-shaped, and 15 to 35 × 3 to 5 μm (average 21.3 × 4.2 μm). Chlamydospores were not observed. Based on these morphological characteristics, the pathogen was identified as Fusarium avenaceum (Fries) Saccardo (1). The pathogenicity on carrot was tested for isolate 19-14 by inoculating each of five carrot roots surface-disinfected with 2% NaOCl, by placing a mycelial plug into the surface of a wound created with a cork borer. Carrot roots inoculated with sterilized PDA plugs served as a negative control treatment. After 5 days of incubating the roots at 25°C, root rot symptoms identical to those observed on the source carrot plants developed on all inoculated roots, and the pathogen was re-isolated from each of these roots using the same procedure descibed above. There were no symptoms on the control roots. Morphological species identification was confirmed by sequencing the translation elongation factor (EF-1α) gene (2). Total DNA was extracted directly from fungal mycelium of isolate 19-14 with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), and PCR amplification was performed with primer pair EF-1/EF-2 (2). Sequence analysis of the EF-1α gene revealed 100% nucleotide identity of isolate 19-14 (GenBank Accession No. KM102536) with the EF-1α sequences of two F. avenaceum isolates from Canada (KC999504 from rye and JX397864 from Triticum durum). To our knowledge, this is the first report of F. avenaceum causing collar, crown, and root rots of stored carrot in Serbia. Since F. avenaceum can produce several mycotoxins, including moniliformin, acuminatopyrone, and chrysogine (3), the presence of this pathogen on stored carrots could represent a significant constraint for carrot production in Serbia, for both direct yield losses and potential mycotoxin contamination. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, UK, 2006. (2) K. O'Donnell et al. Proc. Natl. Acad. Sci. U.S.A. 95:2044, 1998. (3) J. L. Sorenson. J. Agric. Food Chem. 57:1632, 2009. (4) Statistical Office, Republic of Serbia. Retrieved from http://webrzs.stat.gov.rs in May 2014.
胡萝卜(Daucus carota L. subsp. sativus (Hoffm.) Thell.,伞形科)是一种广泛食用且富含抗氧化剂的植物,是塞尔维亚种植的主要蔬菜作物之一,在约7000公顷的土地上平均年产量为65400吨(4)。2013年5月,在塞尔维亚南巴奇卡地区戈斯波丁奇的约20%冷藏胡萝卜根上观察到严重的根腐病。症状包括颈部和冠部干腐,以及储存根上出现大的、棕色至深棕色、圆形、凹陷的病斑。经常观察到大量白色菌丝体覆盖在被侵染根的表面。为了确定病原菌,将感染组织的小块用2%次氯酸钠进行表面消毒,不冲洗,风干,然后置于马铃薯葡萄糖琼脂上。从颈部和冠部组织切片获得的5个单孢分离物,以及从根部切片获得的9个分离物,当在25°C、每天12小时荧光灯下培养时,在琼脂培养基的反面均形成丰富的、棉絮状白色至浅鲑鱼色的真菌菌落,菌落反面带有红橙色色素。所有回收的分离物均形成大量三至六分隔、透明、针状、直或略弯曲、梭形的大分生孢子(30至80×4至5.5μm,平均58.3×4.9μm,n = 100个孢子),每个分生孢子顶端细胞逐渐变细。所有分离物的小分生孢子通常稀少,二至四分隔,纺锤形,15至35×3至5μm(平均21.3×4.2μm)。未观察到厚垣孢子。基于这些形态特征,该病原菌被鉴定为燕麦镰刀菌(Fusarium avenaceum (Fries) Saccardo)(1)。通过将用2%次氯酸钠表面消毒的5个胡萝卜根中的每一个,用菌丝块接种到用钻孔器造成的伤口表面,对分离物19 - 14进行了对胡萝卜的致病性测试。接种无菌马铃薯葡萄糖琼脂块的胡萝卜根作为阴性对照处理。在25°C下将根培养5天后,所有接种根上均出现了与源胡萝卜植株上观察到的相同的根腐症状,并且使用上述相同程序从每根这些根中重新分离出病原菌。对照根上没有症状。通过对翻译延伸因子(EF - 1α)基因进行测序(2),确认了形态学物种鉴定。使用DNeasy植物小提试剂盒(Qiagen,德国希尔德)直接从分离物19 - 14的真菌菌丝体中提取总DNA,并使用引物对EF - 1/EF - 2进行PCR扩增(2)。EF - 1α基因的序列分析显示,分离物19 - 14(GenBank登录号KM102536)与来自加拿大的两个燕麦镰刀菌分离物(来自黑麦的KC999504和来自硬粒小麦的JX397864)的EF - 1α序列具有100%的核苷酸同一性。据我们所知,这是燕麦镰刀菌引起塞尔维亚储存胡萝卜颈部、冠部和根腐病的首次报道。由于燕麦镰刀菌可产生多种霉菌毒素,包括串珠镰刀菌素、尖孢吡喃酮和金黄菌素(3),这种病原菌在储存胡萝卜上的存在可能对塞尔维亚的胡萝卜生产构成重大限制,无论是直接产量损失还是潜在的霉菌毒素污染。参考文献:(1)J. F. Leslie和B. A. Summerell。《镰刀菌实验室手册》,英国伦敦布莱克威尔出版社,2006年。(2)K. O'Donnell等人。《美国国家科学院院刊》95:2044,1998年。(3)J. L. Sorenson。《农业与食品化学杂志》57:1632,2009年。(4)塞尔维亚共和国统计局。2014年5月从http://webrzs.stat.gov.rs获取。