Dinamarca Robinson, Espinoza-González Rodrigo, Campos Cristian H, Pecchi Gina
Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile.
Deparment of Chemical Engineering, Biotechnology and Materials, FCFM, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile.
Materials (Basel). 2019 Jan 29;12(3):413. doi: 10.3390/ma12030413.
The type of metal oxide affects the activity and selectivity of Fe₂O₃⁻SiO₂⁻MeO₂⁻Pt (Me = Ti, Sn, Ce) catalysts on the hydrogenation of cinnamaldehyde. The double shell structure design is thought to protect the magnetic Fe₂O₃ cores, and also act as a platform for depositing a second shell of TiO₂, SnO₂ or CeO₂ metal oxide. To obtain a homogeneous metallic dispersion, the incorporation of 5 wt % of Pt was carried out over Fe₂O₃⁻SiO₂⁻MeO₂ (Me = Ti, Sn, Ce) structures modified with (3-aminopropyl)triethoxysilane by successive impregnation-reduction cycles. The full characterization by HR-TEM, STEM-EDX, XRD, N₂ adsorption isotherm at -196 °C, TPR-H₂ and VSM of the catalysts indicates that homogeneous structures with controlled nano-sized magnetic cores, multi-shells and metallic Pt were obtained. The nature of the metal oxide affects the Pt nanoparticle sizes where the mean Pt diameter is in the order: ⁻TiO₂⁻Pt > ⁻SnO₂⁻Pt > ⁻CeO₂⁻Pt. Among the catalysts studied, ⁻CeO₂⁻Pt had the best catalytic performance, reaching the maximum of conversion at 240 min. of reaction without producing hydrocinnamaldehyde (HCAL). It also showed a plot volcano type for the production of cinnamic alcohol (COL), with 3-phenyl-1-propanol (HCOL) as a main product. The ⁻SnO₂⁻Pt catalyst showed a poor catalytic performance attributable to the Pt clusters' occlusion in the irregular surface of the ⁻SnO₂. Finally, the ⁻TiO₂⁻Pt catalyst showed a continuous production of COL with a 100% conversion and 65% selectivity at 600 min of reaction.
金属氧化物的类型会影响Fe₂O₃⁻SiO₂⁻MeO₂⁻Pt(Me = Ti、Sn、Ce)催化剂对肉桂醛氢化反应的活性和选择性。双壳结构设计被认为既能保护磁性Fe₂O₃核,又能作为沉积TiO₂、SnO₂或CeO₂金属氧化物第二壳层的平台。为了获得均匀的金属分散体,通过连续的浸渍-还原循环,在经(3-氨丙基)三乙氧基硅烷改性的Fe₂O₃⁻SiO₂⁻MeO₂(Me = Ti、Sn、Ce)结构上负载5 wt%的Pt。通过高分辨透射电子显微镜(HR-TEM)、扫描透射电子显微镜-能谱仪(STEM-EDX)、X射线衍射(XRD)、-196℃下的N₂吸附等温线、程序升温还原-H₂(TPR-H₂)和振动样品磁强计(VSM)对催化剂进行的全面表征表明,获得了具有可控纳米尺寸磁核、多壳层和金属Pt的均匀结构。金属氧化物的性质会影响Pt纳米颗粒的尺寸,平均Pt直径顺序为:⁻TiO₂⁻Pt > ⁻SnO₂⁻Pt > ⁻CeO₂⁻Pt。在所研究的催化剂中,⁻CeO₂⁻Pt具有最佳的催化性能,在反应240分钟时达到最大转化率,且不生成氢化肉桂醛(HCAL)。它还呈现出肉桂醇(COL)生成的火山型曲线,以3-苯基-1-丙醇(HCOL)为主要产物。⁻SnO₂⁻Pt催化剂表现出较差的催化性能,这归因于Pt簇被包裹在⁻SnO₂的不规则表面中。最后,⁻TiO₂⁻Pt催化剂在反应600分钟时显示出COL的持续生成,转化率为100%,选择性为65%。