Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).
DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.).
Circulation. 2019 Apr 9;139(15):1813-1827. doi: 10.1161/CIRCULATIONAHA.118.037588.
Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect.
To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype.
Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules.
Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.
肌联蛋白是一种巨大的弹性蛋白,从 Z 盘延伸到 M 带,跨越半个肌节。它作为分子弹簧和机械感受器,与横纹肌疾病有关。控制依赖肌联蛋白的心脏生长并导致疾病的途径多种多样,难以剖析。
为了研究肌联蛋白缺失与功能障碍,作者生成并比较了横纹肌特异性敲除(KO)模型,这些模型通过去除外显子 2(E2-KO)或截断 M 带(消除适当的肌节整合,但保留所有其他功能域)导致肌联蛋白的进行性出生后缺失。作者评估了心脏功能、心肌细胞力学和表型的分子基础。
两种模型均表现出骨骼肌萎缩伴肌力下降、严重的肌节解体以及从 2 周龄开始致死性。心脏表型有很大差异:肌联蛋白缺失导致扩张型心肌病,伴有收缩和舒张功能障碍——M 带肌联蛋白缺失导致心脏萎缩和功能保留。M1/2-KO 心肌细胞的弹性特性得以维持,而 E2-KO 的被动刚度降低。在两种 KO 中,我们发现应激反应增加,与基于肌联蛋白的机械转导相关的蛋白表达增加(CryAB、ANKRD1、肌肉 LIM 蛋白、FHLs、p42、Camk2d、p62 和 Nbr1)。其中,FHL2 和 M 带信号蛋白 p62 和 Nbr1 仅在 E2-KO 中上调,表明其在肌联蛋白截断与全长蛋白缺失的差异病理学中发挥作用。差异应激反应与截断的肌联蛋白有助于维持 M1/2-KO 的机械特性一致,而 E2-KO 中肌联蛋白水平降低导致基于肌联蛋白的刚度降低,并增加剩余肌联蛋白分子的应变。
肌联蛋白逐渐耗竭导致横纹肌肌节解体和萎缩。在完全敲除中,剩余的肌联蛋白分子经历应变增加,导致机械诱导的营养信号,最终导致扩张型心肌病。M1/2-KO 中的截断肌联蛋白有助于维持被动特性,从而减少机械诱导的信号。总之,这些发现有助于从分子上理解为什么肌联蛋白突变会以不同的方式影响心脏生长,并为支持基于个性化医学方法的不同肌联蛋白病的基因型-表型关系提供依据。