Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan.
Graduate School of Engineering , Osaka Electro-Communication University , 18-8 Hatsu-cho , Neyagawa , Osaka 572-8530 , Japan.
J Org Chem. 2019 Mar 1;84(5):2840-2849. doi: 10.1021/acs.joc.8b03263. Epub 2019 Feb 13.
We previously reported the total synthesis of procyanidin B6 by using the stereo- and regioselective C-C bond formation of tethered catechin moieties as the key step. The reaction afforded the product bearing a new C4α-C6' bond linkage instead of the inherently preferable C4α-C8' bond. However, the origin of this selectivity remained unclear due to the complex structure of the substrate. Here we report the results of computational exploration of this C-C bond formation to gain mechanistic insights into the selectivity. The computational study of highly flexible compounds was realized by an exhaustive search of transition states. A large library of candidate transition states was generated by a conformational search of constrained models using molecular mechanics simulations and semiempirical molecular orbital calculations. Subsequent DFT-based transition state calculations provided 367 transition states for C4-C6' and C4-C8' bond formations. Comparison of the geometries and energies showed that the C4α-C6' linkage is preferentially formed via two competing transition states, leading to a C6'-diastereomeric mixture. Interactive atomic distances and visualization of the nonbonding interactions suggest the importance of nonclassical hydrogen bonding and CH-π, π-π, and lone pair-π interactions in stabilizing the two transition states. The present study supports preferential C4α-C6' bond formation of the tethered catechins.
我们之前报道了通过利用连接的儿茶素部分的立体和区域选择性 C-C 键形成作为关键步骤来全合成原花青素 B6。该反应提供了具有新的 C4α-C6'键连接而不是固有优选的 C4α-C8'键连接的产物。然而,由于底物的复杂结构,这种选择性的起源仍然不清楚。在这里,我们报告了对这种 C-C 键形成进行计算探索的结果,以深入了解选择性的机制。通过对过渡态进行详尽搜索,实现了对高灵活化合物的计算研究。通过使用分子力学模拟和半经验分子轨道计算对约束模型进行构象搜索,生成了候选过渡态的大型文库。随后的基于 DFT 的过渡态计算为 C4-C6'和 C4-C8'键形成提供了 367 个过渡态。对几何形状和能量的比较表明,C4α-C6'键通过两个竞争的过渡态优先形成,导致 C6'-非对映异构体混合物。交互式原子距离和非键相互作用的可视化表明非经典氢键以及 CH-π、π-π 和孤对-π 相互作用在稳定两个过渡态中的重要性。本研究支持连接的儿茶素的优先 C4α-C6'键形成。