Suppr超能文献

迈向火山之巅:铱/硅纳米复合材料作为析氢反应的高效电催化剂

Approaching the Volcano Top: Iridium/Silicon Nanocomposites as Efficient Electrocatalysts for the Hydrogen Evolution Reaction.

作者信息

Sheng Minqi, Jiang Binbin, Wu Bin, Liao Fan, Fan Xing, Lin Haiping, Li Youyong, Lifshitz Yeshayahu, Lee Shuit-Tong, Shao Mingwang

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China.

Materials Science and Engineering Department , Technion, Israel Institute of Technology , Haifa 3200003 , Israel.

出版信息

ACS Nano. 2019 Mar 26;13(3):2786-2794. doi: 10.1021/acsnano.8b07572. Epub 2019 Feb 4.

Abstract

Electrolysis of water to generate hydrogen is an important issue for the industrial production of green and sustainable energy. The best electrocatalyst currently available for the hydrogen evolution reaction (HER) is platinum. We herein show that iridium can be manipulated to achieve a record high HER activity surpassing platinum in every aspect: a lower overpotential at any given current density, a higher current density, and mass activity for all bias potentials applied and a catalyst cost reduction of 50% for the same hydrogen generation rate. The superior HER activity was achieved by a binary Ir/Si nanowire catalyst design in which (as density functional theory calculations show) two distinct strategies act in synergy: (i) decreasing the size of the iridium nanoparticles to ∼2.2 nm and (ii) dividing the H-generation process to three steps occurring on two different catalysts: H adsorption on iridium, H diffusion to silicon, and H desorption from silicon.

摘要

电解水制氢是绿色可持续能源工业生产中的一个重要问题。目前用于析氢反应(HER)的最佳电催化剂是铂。我们在此表明,可以操控铱以实现创纪录的高析氢活性,在各个方面都超过铂:在任何给定电流密度下具有更低的过电位、更高的电流密度以及在所施加的所有偏置电位下的质量活性,并且在相同产氢速率下催化剂成本降低50%。通过二元Ir/Si纳米线催化剂设计实现了优异的析氢活性,其中(如密度泛函理论计算所示)两种不同的策略协同作用:(i)将铱纳米颗粒的尺寸减小至约2.2 nm,以及(ii)将产氢过程分为在两种不同催化剂上发生的三个步骤:氢在铱上的吸附、氢向硅的扩散以及氢从硅上的解吸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验