Suppr超能文献

在串联电催化剂上解耦快速氢氧化反应。

Decoupling fast hydrogen oxidation reaction on a tandem electrocatalyst.

作者信息

Guo Wei, Zhao Guoqiang, Sun Ziang, Zhang Bingxing, Xin Dongyue, Gao Mingxia, Liu Yongfeng, Zhuang Zhongbin, Liang Hai-Wei, Pan Hongge, Sun Wenping

机构信息

School of Materials Science and Engineering, Zhejiang University, Hangzhou, P. R. China.

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, P. R. China.

出版信息

Nat Commun. 2025 Jul 22;16(1):6741. doi: 10.1038/s41467-025-62160-8.

Abstract

The hydrogen oxidation reaction (HOR) shows fast kinetics in proton exchange membrane fuel cells (PEMFCs), and has not drawn intense attention. Here, we propose a tandem electrocatalysis concept, decoupling HOR on two independent active sites for accelerated kinetics. As a proof-of-concept application, a Ru-based tandem HOR catalyst is designed, with Ru nanoclusters decorated with Pt single atoms. Experimental and theoretical studies suggest that H dissociation occurs at Ru sites, and then the produced H species migrate to Pt sites followed by the desorption of H. The strong Ru-H interaction promotes the H dissociation step, while the optimum Pt-H interaction ensures the fast desorption, thereby substantially enhancing the HOR kinetics. In H-O fuel cells, this catalyst enables a peak power density of 1.91 W cm and a high anodic mass activity of 23.12 A mg at 0.9 V with an ultralow noble metal loading of 5 μg cm. This work advances the development of low-cost anode catalysts for fuel cells and provides more insight into understanding hydrogen electrocatalysis.

摘要

氢氧化反应(HOR)在质子交换膜燃料电池(PEMFC)中表现出快速动力学,并未引起广泛关注。在此,我们提出了一种串联电催化概念,即将HOR解耦到两个独立的活性位点上以加速动力学。作为概念验证应用,设计了一种基于Ru的串联HOR催化剂,其中Ru纳米团簇上装饰有Pt单原子。实验和理论研究表明,H解离发生在Ru位点,然后产生的H物种迁移到Pt位点,随后H解吸。强Ru-H相互作用促进了H解离步骤,而最佳的Pt-H相互作用确保了快速解吸,从而显著增强了HOR动力学。在氢氧燃料电池中,这种催化剂在0.9 V时可实现1.91 W cm的峰值功率密度和23.12 A mg的高阳极质量活性,且贵金属负载量超低,仅为5 μg cm。这项工作推动了低成本燃料电池阳极催化剂的发展,并为理解氢电催化提供了更多见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验