Suppr超能文献

使用多传感器方法预测下肢截肢者的日常能量消耗。

Predicting ambulatory energy expenditure in lower limb amputees using multi-sensor methods.

机构信息

Department for Health, University of Bath, Bath, United Kingdom.

Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre (DMRC) Headley Court, Surrey, United Kingdom.

出版信息

PLoS One. 2019 Jan 31;14(1):e0209249. doi: 10.1371/journal.pone.0209249. eCollection 2019.

Abstract

PURPOSE

To assess the validity of a derived algorithm, combining tri-axial accelerometry and heart rate (HR) data, compared to a research-grade multi-sensor physical activity device, for the estimation of ambulatory physical activity energy expenditure (PAEE) in individuals with traumatic lower-limb amputation.

METHODS

Twenty-eight participants [unilateral (n = 9), bilateral (n = 10) with lower-limb amputations, and non-injured controls (n = 9)] completed eight activities; rest, ambulating at 5 progressive treadmill velocities (0.48, 0.67, 0.89, 1.12, 1.34m.s-1) and 2 gradients (3 and 5%) at 0.89m.s-1. During each task, expired gases were collected for the determination of [Formula: see text] and subsequent calculation of PAEE. An Actigraph GT3X+ accelerometer was worn on the hip of the shortest residual limb and, a HR monitor and an Actiheart (AHR) device were worn on the chest. Multiple linear regressions were employed to derive population-specific PAEE estimated algorithms using Actigraph GT3X+ outputs and HR signals (GT3X+HR). Mean bias±95% Limits of Agreement (LoA) and error statistics were calculated between criterion PAEE (indirect calorimetry) and PAEE predicted using GT3X+HR and AHR.

RESULTS

Both measurement approaches used to predict PAEE were significantly related (P<0.01) with criterion PAEE. GT3X+HR revealed the strongest association, smallest LoA and least error. Predicted PAEE (GT3X+HR; unilateral; r = 0.92, bilateral; r = 0.93, and control; r = 0.91, and AHR; unilateral; r = 0.86, bilateral; r = 0.81, and control; r = 0.67). Mean±SD percent error across all activities were 18±14%, 15±12% and 15±14% for the GT3X+HR and 45±20%, 39±23% and 34±28% in the AHR model, for unilateral, bilateral and control groups, respectively.

CONCLUSIONS

Statistically derived algorithms (GT3X+HR) provide a more valid estimate of PAEE in individuals with traumatic lower-limb amputation, compared to a proprietary group calibration algorithm (AHR). Outputs from AHR displayed considerable random error when tested in a laboratory setting in individuals with lower-limb amputation.

摘要

目的

评估一种衍生算法的有效性,该算法结合三轴加速度计和心率 (HR) 数据,用于估计创伤性下肢截肢患者的日常体力活动能量消耗 (PAEE),与研究级多传感器身体活动设备进行比较。

方法

28 名参与者[单侧 (n = 9)、双侧 (n = 10)下肢截肢者和未受伤对照组 (n = 9)]完成了八项活动;休息、以 0.48、0.67、0.89、1.12 和 1.34m.s-1 的 5 个渐进式跑步机速度以及在 0.89m.s-1 时以 3 和 5%的梯度进行行走。在每项任务中,收集呼出的气体以确定 [Formula: see text],并随后计算 PAEE。将 Actigraph GT3X+加速度计佩戴在最短残肢的臀部,将心率监测器和 Actiheart (AHR) 设备佩戴在胸部。使用多线性回归使用 Actigraph GT3X+输出和 HR 信号 (GT3X+HR) 为每个群体推导特定的 PAEE 估算算法。使用 GT3X+HR 和 AHR 预测的 PAEE 与间接测热法的标准 PAEE 之间计算均值偏差±95%一致性界限 (LoA) 和误差统计数据。

结果

用于预测 PAEE 的两种测量方法均与标准 PAEE 显著相关 (P<0.01)。GT3X+HR 显示出最强的关联,最小的 LoA 和最小的误差。预测的 PAEE (GT3X+HR;单侧;r = 0.92,双侧;r = 0.93,和对照组;r = 0.91,和 AHR;单侧;r = 0.86,双侧;r = 0.81,和对照组;r = 0.67)。所有活动的平均±SD 百分比误差分别为 GT3X+HR 模型中的 18±14%、15±12%和 15±14%,以及 AHR 模型中的 45±20%、39±23%和 34±28%,分别用于单侧、双侧和对照组。

结论

与专有的组校准算法 (AHR) 相比,统计推导的算法 (GT3X+HR) 为创伤性下肢截肢患者提供了更准确的 PAEE 估计值。在实验室环境中对下肢截肢者进行测试时,AHR 的输出显示出相当大的随机误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验