Suppr超能文献

arrestin 与 GPCR 结合的结构基础。

The structural basis of the arrestin binding to GPCRs.

机构信息

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.

出版信息

Mol Cell Endocrinol. 2019 Mar 15;484:34-41. doi: 10.1016/j.mce.2019.01.019. Epub 2019 Jan 28.

Abstract

G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.

摘要

G 蛋白偶联受体 (GPCRs) 是最大的信号蛋白家族,其靶向的药物比任何其他蛋白家族都多。G 蛋白偶联受体通过 G 蛋白传递信号,被特定的 G 蛋白偶联受体激酶 (GRKs) 磷酸化后,受体活性被猝灭 (脱敏),随后,衔接蛋白与活性磷酸化受体紧密结合。因此,衔接蛋白与两种类型的受体元件结合:一种含有 GRK 添加的磷酸基团,另一种在激活时改变构象。GRKs 将磷酸基团添加到 GPCR C 末端或任何一个胞质环中的丝氨酸和苏氨酸上。除了这些磷酸基团外,衔接蛋白还与受体激活时跨膜螺旋之间出现的腔以及其他几个非磷酸化元件结合。结合 GPCR 的残基定位于两个衔接蛋白结构域的凹面侧。衔接蛋白在与受体结合时发生整体构象变化(被激活)。衔接蛋白作为细胞信号的重要枢纽,从激活的 GPCR 发出,并独立于受体。

相似文献

1
The structural basis of the arrestin binding to GPCRs.
Mol Cell Endocrinol. 2019 Mar 15;484:34-41. doi: 10.1016/j.mce.2019.01.019. Epub 2019 Jan 28.
3
Many faces of the GPCR-arrestin interaction.
Arch Pharm Res. 2020 Sep;43(9):890-899. doi: 10.1007/s12272-020-01263-w. Epub 2020 Aug 14.
4
G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias.
J Biol Chem. 2022 Sep;298(9):102279. doi: 10.1016/j.jbc.2022.102279. Epub 2022 Jul 19.
6
GRKs as Modulators of Neurotransmitter Receptors.
Cells. 2020 Dec 31;10(1):52. doi: 10.3390/cells10010052.
7
Arrestin interactions with G protein-coupled receptors.
Handb Exp Pharmacol. 2014;219:15-56. doi: 10.1007/978-3-642-41199-1_2.
8
Phosphorylation barcoding as a mechanism of directing GPCR signaling.
Sci Signal. 2011 Aug 9;4(185):pe36. doi: 10.1126/scisignal.2002331.
9
G protein-coupled receptor kinases (GRKs) orchestrate biased agonism at the β-adrenergic receptor.
Sci Signal. 2018 Aug 21;11(544):eaar7084. doi: 10.1126/scisignal.aar7084.
10
Receptor-Arrestin Interactions: The GPCR Perspective.
Biomolecules. 2021 Feb 4;11(2):218. doi: 10.3390/biom11020218.

引用本文的文献

4
Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors.
Science. 2024 Jan 5;383(6678):101-108. doi: 10.1126/science.adj3347. Epub 2024 Jan 4.
5
Structure, function and drug discovery of GPCR signaling.
Mol Biomed. 2023 Dec 4;4(1):46. doi: 10.1186/s43556-023-00156-w.
7
Unraveling the Functional Significance of Unstructured Regions in G Protein-Coupled Receptors.
Biomolecules. 2023 Sep 22;13(10):1431. doi: 10.3390/biom13101431.
9
Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation.
Mol Cell. 2023 Jun 15;83(12):2091-2107.e7. doi: 10.1016/j.molcel.2023.04.025. Epub 2023 May 19.
10
Design, synthesis and biological evaluation of novel orthosteric-allosteric ligands of the cannabinoid receptor type 2 (CBR).
Front Chem. 2022 Sep 27;10:984069. doi: 10.3389/fchem.2022.984069. eCollection 2022.

本文引用的文献

1
Different mode of arrestin-3 binding at the human Y and Y receptor.
Cell Signal. 2018 Oct;50:58-71. doi: 10.1016/j.cellsig.2018.06.010. Epub 2018 Jun 23.
2
Structure of the µ-opioid receptor-G protein complex.
Nature. 2018 Jun;558(7711):547-552. doi: 10.1038/s41586-018-0219-7. Epub 2018 Jun 13.
3
Cryo-EM structure of human rhodopsin bound to an inhibitory G protein.
Nature. 2018 Jun;558(7711):553-558. doi: 10.1038/s41586-018-0215-y. Epub 2018 Jun 13.
4
Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation.
Nat Struct Mol Biol. 2018 Jun;25(6):538-545. doi: 10.1038/s41594-018-0071-3. Epub 2018 Jun 5.
5
Biased G Protein-Coupled Receptor Signaling: Changing the Paradigm of Drug Discovery.
Circulation. 2018 May 29;137(22):2315-2317. doi: 10.1161/CIRCULATIONAHA.117.028194.
6
Molecular mechanism of GPCR-mediated arrestin activation.
Nature. 2018 May;557(7705):452-456. doi: 10.1038/s41586-018-0077-3. Epub 2018 May 2.
7
Structural Basis of Arrestin-Dependent Signal Transduction.
Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7.
8
G- and G-coupled GPCRs show different modes of G-protein binding.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2383-2388. doi: 10.1073/pnas.1721896115. Epub 2018 Feb 20.
9
Biased signalling: from simple switches to allosteric microprocessors.
Nat Rev Drug Discov. 2018 Apr;17(4):243-260. doi: 10.1038/nrd.2017.229. Epub 2018 Jan 5.
10
Structural basis of arrestin-3 activation and signaling.
Nat Commun. 2017 Nov 10;8(1):1427. doi: 10.1038/s41467-017-01218-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验