Cheng Bin-Hai, Zeng Fan-Xin, Chen Wen-Jing, Cheng Hui-Yuan, Zeng Raymond J, Jiang Hong
School of Life Sciences, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China.
CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China.
iScience. 2019 Feb 22;12:204-215. doi: 10.1016/j.isci.2019.01.016. Epub 2019 Jan 14.
The nontemplating preparation of porous carbon materials by using specially designed polymer precursors for supercapacitor is attracting considerable research attention because of the more controllable frame structure and easier processes than templating methods. Herein, a deliberately designed cross-linking polyphosphamide resin with defined N and P structure is synthesized and then carbonized to obtain porous carbon material. The as-obtained porous carbon material has a specific surface area of 2,620 m g, high porosity of 1.49 cm g, and well-distributed micro/mesoporous carbon structure. Different from activation by post-added NHHPO, the confined N and P in the polymer frame are confirmed to play an important role in pore structure development by forming in situ highly dispersed NHHPO during carbonization. When evaluated as the electrode material for supercapacitors, the polyphosphamide-resin-based porous carbon material demonstrates excellent capacitance (440 F g under 0.5 A g) and high stability (retention of 93% over 10,000 cycles).
通过使用专门设计的用于超级电容器的聚合物前驱体来非模板化制备多孔碳材料,由于其框架结构比模板法更可控且工艺更简单,正吸引着大量的研究关注。在此,合成了一种特意设计的具有特定氮和磷结构的交联聚磷酰胺树脂,然后将其碳化以获得多孔碳材料。所获得的多孔碳材料具有2620 m²/g的比表面积、1.49 cm³/g的高孔隙率以及分布均匀的微孔/介孔碳结构。与后添加NH₄H₂PO₄活化不同,聚合物框架中受限的氮和磷被证实通过在碳化过程中形成原位高度分散的NH₄H₂PO₄在孔结构发展中起重要作用。当作为超级电容器的电极材料进行评估时,基于聚磷酰胺树脂的多孔碳材料表现出优异的电容(在0.5 A/g下为440 F/g)和高稳定性(在10000次循环后保持率为93%)。