Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 21513, China.
Biomaterials. 2019 Mar;197:368-379. doi: 10.1016/j.biomaterials.2019.01.033. Epub 2019 Jan 21.
The limited tumor specific uptake of nanoparticles is one of major bottlenecks for clinical translation of nanoscale therapeutics. Herein, we propose a strategy using internal radioisotope therapy (RIT) delivered by liposomal nanoparticles to improve the tumor vasculature permeability, so as to increase the tumor specific uptake of the second-wave therapeutic nanoparticles for enhanced cancer therapies. Via a convenient method, a therapeutic radioisotope iodine-131 is labeled onto albumin-encapsulated liposomes with greatly improved radiolabeling stability compared to I labeled albumin. The obtained I-liposome with long blood half-life could accumulate in the tumor and damage tumor blood endothelial cells to improve the tumor vascular permeability. As the result, the tumor retention of the second wave of liposomal nanoparticles could be greatly increased owing to the RIT-enhanced EPR effect. In three separated experiments, we then demonstrate that such strategy could be utilized for photothermal therapy (PTT), hypoxia-activated chemotherapy (HCT) and checkpoint blockade immunotherapy, all of which could be enhanced by RIT with excellent in vivo synergistic therapeutic outcomes. Our work highlights the great promises of employing nanoparticle-mediated RIT to modulate tumor vasculature for further enhanced cancer therapy, and may have potential value for clinical translation.
纳米颗粒的肿瘤特异性摄取有限是纳米尺度治疗剂临床转化的主要瓶颈之一。在此,我们提出了一种使用脂质体纳米颗粒内放射治疗(RIT)的策略来提高肿瘤血管通透性,从而增加第二波治疗性纳米颗粒的肿瘤特异性摄取,以增强癌症治疗效果。通过一种简便的方法,将放射性同位素碘-131 标记到白蛋白包封的脂质体上,与 I 标记白蛋白相比,其放射性标记稳定性大大提高。所得的 I-脂质体具有较长的血液半衰期,可在肿瘤中积累并损伤肿瘤血管内皮细胞,以提高肿瘤血管通透性。结果,由于 RIT 增强的 EPR 效应,第二波脂质体纳米颗粒的肿瘤滞留量大大增加。在三个独立的实验中,我们进一步证明了这种策略可用于光热治疗(PTT)、缺氧激活化疗(HCT)和检查点封锁免疫治疗,所有这些治疗都可以通过 RIT 增强,获得优异的体内协同治疗效果。我们的工作强调了利用纳米颗粒介导的 RIT 调节肿瘤血管以进一步增强癌症治疗的巨大潜力,并且可能具有临床转化的潜在价值。
J Control Release. 2013-2-4
Mater Today Bio. 2025-8-5
Biomolecules. 2023-8-12
Cancer Cell Int. 2022-8-23
Pharmaceutics. 2021-10-21
Theranostics. 2021-6-4