Zhen Zhiming, Feng Liu, Liu He, Chen Ming, Chen Jiafei, Wang Jun
7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
Mater Today Bio. 2025 Aug 5;34:102156. doi: 10.1016/j.mtbio.2025.102156. eCollection 2025 Oct.
Radionuclide therapy (RNT) uses the ionizing radiation generated by the emitted particles during radioactive decay to directly damage DNA structure or indirectly increase the concentration of free radicals in cells, thereby destroying or killing diseased cells. Radionuclides offer the advantages of high sensitivity, non-invasive, and functional imaging in clinical diagnosis. The key to RNT is to deliver sufficient radiation dose to tumors while reducing toxic side effects on normal tissues and organs. However, most radionuclides are unable to reach the lesion site, and the radiation dose is not sufficient to completely kill cancer cells. In recent years, the rapid development of nanotechnology has provided new ideas for the design of radiopharmaceuticals. Compared to small molecules, nanomaterials have the advantages of a larger specific surface area, more labeling sites, good biocompatibility, and a longer blood circulation time. Moreover, the combination of the unique intrinsic properties of nanomaterials with radionuclides can construct multifunctional carriers, which achieve mutual complementarity. In this paper, we summarize the research progress of nanomaterials in tumor radionuclide therapy (including radionuclide therapy, radionuclide/chemo therapy, radionuclide/immuno therapy, radionuclide/photothermal therapy, radionuclide/photodynamic therapy, and radionuclide/chemodynamic therapy) and prospect the future development and challenges of nano-radiopharmaceuticals.
放射性核素治疗(RNT)利用放射性衰变过程中发射粒子产生的电离辐射直接破坏DNA结构或间接增加细胞内自由基浓度,从而破坏或杀死病变细胞。放射性核素在临床诊断中具有高灵敏度、非侵入性和功能成像等优点。RNT的关键在于向肿瘤提供足够的辐射剂量,同时减少对正常组织和器官的毒副作用。然而,大多数放射性核素无法到达病变部位,辐射剂量不足以完全杀死癌细胞。近年来,纳米技术的快速发展为放射性药物的设计提供了新思路。与小分子相比,纳米材料具有更大的比表面积、更多的标记位点、良好的生物相容性和更长的血液循环时间。此外,纳米材料独特的内在特性与放射性核素相结合可构建多功能载体,实现优势互补。本文综述了纳米材料在肿瘤放射性核素治疗(包括放射性核素治疗、放射性核素/化疗、放射性核素/免疫治疗、放射性核素/光热治疗、放射性核素/光动力治疗和放射性核素/化学动力治疗)方面的研究进展,并对纳米放射性药物的未来发展及挑战进行了展望。
Mater Today Bio. 2025-8-5
Psychopharmacol Bull. 2024-7-8
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2018-2-6
2025-1
Zhonghua Jie He He Hu Xi Za Zhi. 2025-3-12
Cochrane Database Syst Rev. 2025-6-16
CA Cancer J Clin. 2025
ACS Cent Sci. 2024-12-5
J Exp Clin Cancer Res. 2024-11-30