文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肿瘤治疗的放射性核素标记纳米材料:最新进展与展望

Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

作者信息

Zhen Zhiming, Feng Liu, Liu He, Chen Ming, Chen Jiafei, Wang Jun

机构信息

7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

出版信息

Mater Today Bio. 2025 Aug 5;34:102156. doi: 10.1016/j.mtbio.2025.102156. eCollection 2025 Oct.


DOI:10.1016/j.mtbio.2025.102156
PMID:40822930
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12355509/
Abstract

Radionuclide therapy (RNT) uses the ionizing radiation generated by the emitted particles during radioactive decay to directly damage DNA structure or indirectly increase the concentration of free radicals in cells, thereby destroying or killing diseased cells. Radionuclides offer the advantages of high sensitivity, non-invasive, and functional imaging in clinical diagnosis. The key to RNT is to deliver sufficient radiation dose to tumors while reducing toxic side effects on normal tissues and organs. However, most radionuclides are unable to reach the lesion site, and the radiation dose is not sufficient to completely kill cancer cells. In recent years, the rapid development of nanotechnology has provided new ideas for the design of radiopharmaceuticals. Compared to small molecules, nanomaterials have the advantages of a larger specific surface area, more labeling sites, good biocompatibility, and a longer blood circulation time. Moreover, the combination of the unique intrinsic properties of nanomaterials with radionuclides can construct multifunctional carriers, which achieve mutual complementarity. In this paper, we summarize the research progress of nanomaterials in tumor radionuclide therapy (including radionuclide therapy, radionuclide/chemo therapy, radionuclide/immuno therapy, radionuclide/photothermal therapy, radionuclide/photodynamic therapy, and radionuclide/chemodynamic therapy) and prospect the future development and challenges of nano-radiopharmaceuticals.

摘要

放射性核素治疗(RNT)利用放射性衰变过程中发射粒子产生的电离辐射直接破坏DNA结构或间接增加细胞内自由基浓度,从而破坏或杀死病变细胞。放射性核素在临床诊断中具有高灵敏度、非侵入性和功能成像等优点。RNT的关键在于向肿瘤提供足够的辐射剂量,同时减少对正常组织和器官的毒副作用。然而,大多数放射性核素无法到达病变部位,辐射剂量不足以完全杀死癌细胞。近年来,纳米技术的快速发展为放射性药物的设计提供了新思路。与小分子相比,纳米材料具有更大的比表面积、更多的标记位点、良好的生物相容性和更长的血液循环时间。此外,纳米材料独特的内在特性与放射性核素相结合可构建多功能载体,实现优势互补。本文综述了纳米材料在肿瘤放射性核素治疗(包括放射性核素治疗、放射性核素/化疗、放射性核素/免疫治疗、放射性核素/光热治疗、放射性核素/光动力治疗和放射性核素/化学动力治疗)方面的研究进展,并对纳米放射性药物的未来发展及挑战进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/7f81c0772071/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/01fe89ae23b1/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/9fce26f333c1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/ba9369315830/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/0c949f14c53a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/64af5c9c659c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/df6881331607/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/40635f7b485b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/20e9f6d15adc/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/57b36b583597/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/7f81c0772071/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/01fe89ae23b1/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/9fce26f333c1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/ba9369315830/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/0c949f14c53a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/64af5c9c659c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/df6881331607/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/40635f7b485b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/20e9f6d15adc/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/57b36b583597/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12355509/7f81c0772071/gr9.jpg

相似文献

[1]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[4]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[5]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[6]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[7]
Ophthalmia Neonatorum

2025-1

[8]
Advancing cancer treatment with nanozyme frameworks: Integrating photothermal, photodynamic, sonodynamic, and chemodynamic therapies.

Iran J Basic Med Sci. 2025

[9]
[Guidelines for the prevention and management of bronchial asthma (2024 edition)].

Zhonghua Jie He He Hu Xi Za Zhi. 2025-3-12

[10]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

本文引用的文献

[1]
Cancer treatment and survivorship statistics, 2025.

CA Cancer J Clin. 2025

[2]
Chemodynamic Therapy Enhanced I-Radiotherapy for Efficient Inhibition on Cancer Growth and Metastasis.

Small. 2025-7

[3]
Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer.

ACS Nano. 2025-2-18

[4]
Preclinical and First-in-Human Study of a Compact Radionuclide Labeled Self-Assembly Nanomedicine for Chemo-Radio-Theranostics of Cancer.

ACS Nano. 2025-1-28

[5]
An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh). 2025-3

[6]
Flexible Morphological Regulation of Photothermal Nanodrugs: Understanding the Relationship between the Structure, Photothermal Effect, and Tumoral Biodistribution.

ACS Nano. 2025-1-21

[7]
Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis.

ACS Cent Sci. 2024-12-5

[8]
Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma.

J Nanobiotechnology. 2024-12-23

[9]
Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy.

Acta Pharm Sin B. 2024-11

[10]
Ferroptosis and the tumor microenvironment.

J Exp Clin Cancer Res. 2024-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索