Suppr超能文献

具有关联无序的一维系统的谱函数。

Spectral functions of one-dimensional systems with correlated disorder.

作者信息

Khan N A, Viana Parente Lopes J M, Santos Pires J P, Lopes Dos Santos J M B

机构信息

Centro de Física das Universidades do Minho e Porto, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.

出版信息

J Phys Condens Matter. 2019 May 1;31(17):175501. doi: 10.1088/1361-648X/ab03ad. Epub 2019 Jan 31.

Abstract

We investigate the spectral function of Bloch states in a one-dimensional tight-binding non-interacting chain with two different models of static correlated disorder, at zero temperature. We report numerical calculations of the single-particle spectral function based on the Kernel polynomial method, which has an [Formula: see text] computational complexity. These results are then confirmed by analytical calculations, where precise conditions were obtained for the appearance of a classical limit in a single-band lattice system. Spatial correlations in the disordered potential give rise to non-perturbative spectral functions shaped as the probability distribution of the random on-site energies, even at low disorder strengths. In the case of disordered potentials with an algebraic power-spectrum, [Formula: see text] [Formula: see text], we show that the spectral function is not self-averaging for [Formula: see text].

摘要

我们在零温度下,使用两种不同的静态关联无序模型,研究了一维紧束缚无相互作用链中布洛赫态的谱函数。我们报告了基于核多项式方法的单粒子谱函数的数值计算结果,该方法具有[公式:见正文]的计算复杂度。然后通过解析计算对这些结果进行了验证,在解析计算中得到了单带晶格系统中出现经典极限的精确条件。无序势中的空间关联导致了非微扰谱函数,其形状如同随机在位能的概率分布,即使在低无序强度下也是如此。对于具有代数幂谱的无序势,[公式:见正文][公式:见正文],我们表明,当[公式:见正文]时,谱函数不是自平均的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验