Vermont Genetics Network, University of Vermont, Burlington, VT, 05405, USA.
Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
BMC Med Genomics. 2019 Jan 31;12(Suppl 1):25. doi: 10.1186/s12920-019-0472-0.
While changes in mRNA expression during tumorigenesis have been used widely as molecular biomarkers for the diagnosis of a number of cancers, the approach has limitations. For example, traditional methods do not consider the regulatory and positional relationship between mRNA and lncRNA. The latter has been largely shown to possess tumor suppressive or oncogenic properties. The combined analysis of mRNA and lncRNA is likely to facilitate the identification of biomarkers with higher confidence.
Therefore, we have developed an lncRNA-related method to identify traditional mRNA biomarkers. First we identified mRNAs that are differentially expressed in Hepatocellular Carcinoma (HCC) by comparing cancer and matched adjacent non-tumorous liver tissues. Then, we performed mRNA-lncRNA relationship and coexpression analysis and obtained 41 lncRNA-related and -coexpressed mRNA biomarkers. Next, we performed network analysis, gene ontology analysis and pathway analysis to unravel the functional roles and molecular mechanisms of these lncRNA-related and -coexpressed mRNA biomarkers. Finally, we validated the prediction and performance of the 41 lncRNA-related and -coexpressed mRNA biomarkers using Support Vector Machine model with five-fold cross-validation in an independent HCC dataset from RNA-seq.
Our results suggested that mRNAs expression profiles coexpressed with positionally related lncRNAs can provide important insights into early diagnosis and specific targeted gene therapy of HCC.
虽然肿瘤发生过程中 mRNA 表达的变化已被广泛用作多种癌症诊断的分子生物标志物,但该方法存在局限性。例如,传统方法不考虑 mRNA 和 lncRNA 之间的调控和位置关系。后者已被大量证明具有肿瘤抑制或致癌特性。对 mRNA 和 lncRNA 的联合分析可能有助于更有信心地识别生物标志物。
因此,我们开发了一种与 lncRNA 相关的方法来识别传统的 mRNA 生物标志物。首先,我们通过比较肝癌 (HCC) 癌组织和配对的相邻非肿瘤肝组织,鉴定出在 HCC 中差异表达的 mRNAs。然后,我们进行了 mRNA-lncRNA 关系和共表达分析,获得了 41 个 lncRNA 相关和共表达的 mRNA 生物标志物。接下来,我们进行了网络分析、基因本体论分析和途径分析,以揭示这些 lncRNA 相关和共表达的 mRNA 生物标志物的功能作用和分子机制。最后,我们使用支持向量机模型在来自 RNA-seq 的独立 HCC 数据集的五重交叉验证中验证了 41 个 lncRNA 相关和共表达的 mRNA 生物标志物的预测和性能。
我们的研究结果表明,与位置相关的 lncRNA 共表达的 mRNAs 表达谱可为 HCC 的早期诊断和特定的靶向基因治疗提供重要的见解。