Suppr超能文献

用于图像分割的水平传播方法:在乳腺磁共振成像中的应用

Levels Propagation Approach to Image Segmentation: Application to Breast MR Images.

作者信息

Bouchebbah Fatah, Slimani Hachem

机构信息

LIMED Laboratory, Computer Science Department, University of Bejaia, 06000, Bejaia, Algeria.

出版信息

J Digit Imaging. 2019 Jun;32(3):433-449. doi: 10.1007/s10278-018-00171-2.

Abstract

Accurate segmentation of a breast tumor region is fundamental for treatment. Magnetic resonance imaging (MRI) is a widely used diagnostic tool. In this paper, a new semi-automatic segmentation approach for MRI breast tumor segmentation called Levels Propagation Approach (LPA) is introduced. The introduced segmentation approach takes inspiration from tumor propagation and relies on a finite set of nested and non-overlapped levels. LPA has several features: it is highly suitable to parallelization and offers a simple and dynamic possibility to automate the threshold selection. Furthermore, it allows stopping of the segmentation at any desired limit. Particularly, it allows to avoid to reach the breast skin-line region which is known as a significant issue that reduces the precision and the effectiveness of the breast tumor segmentation. The proposed approach have been tested on two clinical datasets, namely RIDER breast tumor dataset and CMH-LIMED breast tumor dataset. The experimental evaluations have shown that LPA has produced competitive results to some state-of-the-art methods and has acceptable computation complexity.

摘要

准确分割乳腺肿瘤区域是治疗的基础。磁共振成像(MRI)是一种广泛使用的诊断工具。本文介绍了一种用于MRI乳腺肿瘤分割的新的半自动分割方法,称为层次传播方法(LPA)。所引入的分割方法从肿瘤传播中获得灵感,并依赖于一组有限的嵌套且不重叠的层次。LPA具有几个特点:它非常适合并行化,并且提供了一种简单而动态的自动选择阈值的可能性。此外,它允许在任何期望的界限处停止分割。特别是,它允许避免到达乳腺皮肤线区域,这是一个已知的会降低乳腺肿瘤分割精度和有效性的重要问题。所提出的方法已在两个临床数据集上进行了测试,即RIDER乳腺肿瘤数据集和CMH-LIMED乳腺肿瘤数据集。实验评估表明,LPA产生了与一些先进方法相竞争的结果,并且具有可接受的计算复杂度。

相似文献

1
Levels Propagation Approach to Image Segmentation: Application to Breast MR Images.
J Digit Imaging. 2019 Jun;32(3):433-449. doi: 10.1007/s10278-018-00171-2.
2
Multistage processing procedure for 4D breast MRI segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3036-9. doi: 10.1109/IEMBS.2008.4649843.
3
Image manifold revealing for breast lesion segmentation in DCE-MRI.
Biomed Mater Eng. 2015;26 Suppl 1:S1353-60. doi: 10.3233/BME-151433.
5
Whole heart segmentation of cardiac MRI using multiple path propagation strategy.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):435-43. doi: 10.1007/978-3-642-15705-9_53.
6
Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):393-401. doi: 10.1007/978-3-540-75759-7_48.
7
Principles and methods for automatic and semi-automatic tissue segmentation in MRI data.
MAGMA. 2016 Apr;29(2):95-110. doi: 10.1007/s10334-015-0520-5. Epub 2016 Jan 11.
10
Molecular Subtypes Recognition of Breast Cancer in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging Phenotypes from Radiomics Data.
Comput Math Methods Med. 2019 Oct 30;2019:6978650. doi: 10.1155/2019/6978650. eCollection 2019.

本文引用的文献

1
Spatiotemporal features of DCE-MRI for breast cancer diagnosis.
Comput Methods Programs Biomed. 2018 Mar;155:153-164. doi: 10.1016/j.cmpb.2017.12.015. Epub 2017 Dec 12.
2
Computational methods for the image segmentation of pigmented skin lesions: A review.
Comput Methods Programs Biomed. 2016 Jul;131:127-41. doi: 10.1016/j.cmpb.2016.03.032. Epub 2016 Apr 8.
3
An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier.
J Med Syst. 2016 Apr;40(4):105. doi: 10.1007/s10916-016-0454-0. Epub 2016 Feb 18.
4
The role of oxidative stress on breast cancer development and therapy.
Tumour Biol. 2016 Apr;37(4):4281-91. doi: 10.1007/s13277-016-4873-9. Epub 2016 Jan 27.
7
Automatic segmentation of invasive breast carcinomas from dynamic contrast-enhanced MRI using time series analysis.
J Magn Reson Imaging. 2014 Aug;40(2):467-75. doi: 10.1002/jmri.24394. Epub 2013 Sep 23.
10
Segmentation algorithms for ear image data towards biomechanical studies.
Comput Methods Biomech Biomed Engin. 2014;17(8):888-904. doi: 10.1080/10255842.2012.723700. Epub 2012 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验