Environ Sci Technol. 2019 Mar 5;53(5):2618-2625. doi: 10.1021/acs.est.8b04790. Epub 2019 Feb 15.
Polyamide is the key material in modern membrane desalination; however, its well-known and incompletely understood drawback is its low tolerance to chlorine, the most efficient in-line disinfectant. Here we report a first investigation of the mechanism and kinetics of chlorine attack using electrochemical impedance spectroscopy (EIS) that directly probes changes in ion permeation upon chlorination at different pH values, focusing on its early stages and low chlorine concentrations (15-197 ppm). EIS results partly conform to an established two-stage mechanism that proceeds as N-chlorination followed by either C-chlorination in acidic conditions or amide bond scission in alkaline conditions. However, early time kinetics in acidic conditions shows inconsistencies with this model, explained by possible effects of direct ring chlorination and finite polymer relaxation rates. The findings indicate that (a) N-chlorination reduces membrane polarity and ion permeability, while C-chlorination has an opposite effect; (b) chlorination in acidic conditions must involve other reactions, such as direct ring chlorination, in addition to N-chlorination and Orton rearrangement; and (c) the ultimate chemical transformations (C-chlorination or amide bond scission) result in an irreversible increase in membrane polarity and loss of ion rejection. The results highlight the potential of EIS as a powerful and sensitive tool for studying chemical degradation of ion-selective materials that may assist in developing new chlorine-resistant membranes.
聚酰胺是现代膜脱盐的关键材料;然而,其众所周知且尚未完全理解的缺点是对氯的耐受性低,氯是最有效的在线消毒剂。在这里,我们使用电化学阻抗谱(EIS)首次研究了氯攻击的机制和动力学,该方法直接探测了在不同 pH 值下氯化时离子渗透的变化,重点研究了其早期阶段和低氯浓度(15-197 ppm)。EIS 结果部分符合既定的两阶段机制,该机制依次进行 N-氯化,然后在酸性条件下进行 C-氯化,或者在碱性条件下进行酰胺键断裂。然而,酸性条件下的早期动力学与该模型不一致,这可以通过直接环氯化和有限聚合物弛豫速率的可能影响来解释。研究结果表明:(a)N-氯化会降低膜的极性和离子渗透性,而 C-氯化则具有相反的效果;(b)酸性条件下的氯化除了 N-氯化和 Orton 重排外,还必须涉及其他反应,例如直接环氯化;(c)最终的化学转化(C-氯化或酰胺键断裂)会导致膜极性不可逆增加和离子排斥损失。这些结果突出了 EIS 作为研究离子选择性材料化学降解的强大而敏感工具的潜力,这可能有助于开发新的耐氯膜。