Lu Gang, Shang Wentao, Ma Xinyao, Xu Hengyue, A Hubao, Sun Jiawei, Li Xiaolu, Jia Mingyi, Lu Shuang, Wu Jun, Chen Xi, Chen Shensheng, Fan Jun, An Alicia Kyoungjin
School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China.
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Nat Commun. 2025 Jul 8;16(1):6289. doi: 10.1038/s41467-025-61352-6.
Thin-film composite membranes are integral to the reverse osmosis (RO) process, effectively converting seawater and brackish water into potable water. While significant strides have been made in improving water permeability and salt rejection, there has been a corresponding lag in enhancing chlorine resistance and boron rejection. This study presents a suprasmolecular nanocrystalline membrane (SNM) with abundant subnanometer channels created through precisely assembled and well-oriented tetra-oligomer chains, enhanced by interfacial hydrogen bonding under nanoconfined space. The 6 nm-thick SNM exhibits highly aligned nanocrystalline domains and a Young's modulus of 4 ± 0.5 GPa. Benefiting from its ultrathin thickness and well-oriented subnanoscale channels, the SNM functions effectively as a permeation and selective layer, achieving 99.6% NaCl rejection at 55 bar with a 3.5 wt% NaCl feed and delivering 2-4 times higher water permeance than commercial seawater RO membranes. Molecular dynamics simulations reveal that the abundant, well-aligned subnanochannels facilitate rapid water transport while raising the energy barrier for sodium ion transport. Furthermore, the SNM shows superior boron rejection (exceeding 92.5% at pH 7), remarkable chlorine resistance (200 ppm NaClO exposure for 300 hours), and sustained operational stability under extreme pH conditions (1 and 13) for over 168 hours. These findings establish that space-confined interfacial hydrogen bonding governs the precision self-assembly of robust subnanochannels, offering a new paradigm for high-resilience desalination membranes.
薄膜复合膜是反渗透(RO)过程不可或缺的一部分,能有效地将海水和微咸水转化为饮用水。尽管在提高水渗透性和脱盐率方面已经取得了显著进展,但在增强耐氯性和硼截留率方面却相应滞后。本研究提出了一种超分子纳米晶膜(SNM),它具有丰富的亚纳米通道,这些通道是通过精确组装且取向良好的四聚体链形成的,并在纳米受限空间内通过界面氢键得到增强。这种6纳米厚的SNM表现出高度取向的纳米晶域,杨氏模量为4±0.5吉帕。得益于其超薄的厚度和取向良好的亚纳米级通道,SNM有效地起到了渗透和选择层的作用,在进料为3.5 wt%氯化钠、压力为55巴的条件下,对氯化钠的截留率达到99.6%,水渗透通量比商用海水RO膜高2至4倍。分子动力学模拟表明,丰富且取向良好的亚纳米通道有助于水的快速传输,同时提高了钠离子传输的能垒。此外,SNM表现出优异的硼截留率(在pH值为7时超过92.5%)、显著的耐氯性(在200 ppm次氯酸钠中暴露300小时)以及在极端pH条件(1和13)下超过168小时的持续运行稳定性。这些发现表明,空间受限的界面氢键控制着坚固亚纳米通道的精确自组装,为高韧性脱盐膜提供了一种新的范例。