Department of Chemistry Ugo Schiff, University of Florence and CSGI, Via della Lastruccia 3, 50019 Florence, Italy.
Department of Chemistry Ugo Schiff, University of Florence and CSGI, Via della Lastruccia 3, 50019 Florence, Italy.
J Colloid Interface Sci. 2019 Apr 1;541:329-338. doi: 10.1016/j.jcis.2019.01.091. Epub 2019 Jan 23.
The inclusion of inorganic nanoparticles (NPs) within organized lipid assemblies combines the rich polymorphism of lipid phases with advanced functional properties provided by the NPs, expanding the applicative spectrum of these materials. In spite of the relevance of these hybrid systems, fundamental knowledge on the effects of NPs on the structure and physicochemical properties of lipid mesophases is still limited. This contribution combines Small-Angle X-ray Scattering (SAXS) and Rheology to connect the structural properties with the viscoelastic behavior of liquid crystalline mesophases of Phytantriol (Phyt) containing two kinds of hydrophobic NPs of similar size, i.e., gold NPs (AuNPs) and Superparamagnetic Iron Oxide NPs (SPIONs). Both types of NPs spontaneously embed in the hydrophobic domains of the liquid crystalline mesophase, deeply affecting its phase behavior, as SAXS results disclose. We propose a general model to interpret and predict the structure of cubic mesophases doped with hydrophobic NPs, where the effects on lipid phase behavior depend only on NPs' size and volume fraction but not on chemical identity. The rheological measurements reveal that NPs increase the solid-like behavior of the hybrid and, surprisingly, this effect depends on the chemical nature of the NPs. We interpret these results by suggesting that the long-range dipolar interactions of SPIONs affect the viscoelastic response of the material and provide an additional control parameter on mechanical properties. Overall, this study discloses new fundamental insights into hybrid liquid crystalline mesophases doped with hydrophobic NPs, highly relevant for future applications, e.g. in the biomedical field as smart materials for drug delivery.
将无机纳米粒子 (NPs) 纳入有组织的脂质组装体中,将脂质相的丰富多态性与 NPs 提供的先进功能特性相结合,扩展了这些材料的应用范围。尽管这些混合系统具有相关性,但关于 NPs 对脂质中间相的结构和物理化学性质的影响的基本知识仍然有限。本研究将小角 X 射线散射 (SAXS) 和流变学结合起来,将结构性质与含有两种类似尺寸的疏水性 NPs(即金纳米颗粒 (AuNPs) 和超顺磁性氧化铁纳米颗粒 (SPIONs) 的植物三醇 (Phyt) 的液晶中间相的粘弹性行为联系起来。这两种类型的 NPs 都自发地嵌入液晶中间相的疏水区,这一发现揭示了它们对中间相相行为的深刻影响。我们提出了一个通用模型来解释和预测立方中间相掺杂疏水性 NPs 的结构,其中对脂质相行为的影响仅取决于 NPs 的尺寸和体积分数,而与化学性质无关。流变学测量表明,NPs 增加了混合体系的固态行为,而令人惊讶的是,这种效应取决于 NPs 的化学性质。我们通过提出 SPIONs 的长程偶极相互作用影响材料的粘弹性响应,并为机械性能提供附加控制参数来解释这些结果。总的来说,这项研究揭示了掺杂疏水性 NPs 的混合液晶中间相的新的基本见解,这对未来的应用非常重要,例如在生物医学领域作为药物输送的智能材料。