Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico; Biodesign Swette Center of Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701 USA.
Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713 Doha, Qatar.
Bioresour Technol. 2019 Apr;278:303-310. doi: 10.1016/j.biortech.2019.01.084. Epub 2019 Jan 21.
With objective to design cyanobacterial biorefinery, taking Lyngbya as a model organism, a detail sequential protocol has been developed for production of UV protectant and lipids. This study addresses ultra violet radiations (UVR), exposure time of UVRT, nitrogen stress, salinity, oxidative stress to produce UV protectant and lipid in cyanobacteria. To evaluate these parameters a design of experiment (DOE; using a 2 k design) was performed. Based on chemical solubility property of UV protectant in form of mycosporine like amino acid (MAAs) and lipids were extracted. Quantitative and qualitative assay of UV protectant was confirmed by spectrophotometric scanning and Fourier-transform infrared spectroscopy and lipid through fatty acid methyl esters analysis. Nitrogen abundance and high oxidative stress is helpful in the synthesis of UV protectant. This study concluded, UV exposure is good strategy to induce synthesis of UV protectant and saturated lipid productivity. This biorefinery approach encourages economical and environmentally sustainable options.
为了设计蓝细菌生物炼制厂,以 Lyngbya 为模型生物,我们开发了一个详细的序贯方案,用于生产紫外线防护剂和脂质。本研究探讨了超紫外线辐射 (UVR)、UVRT 的暴露时间、氮胁迫、盐度、氧化应激对蓝细菌中紫外线防护剂和脂质的产生。为了评估这些参数,我们进行了实验设计 (DOE;使用 2k 设计)。根据紫外线防护剂在真菌素样氨基酸 (MAAs)中的化学溶解度特性,提取了 MAAs 和脂质。通过分光光度扫描和傅里叶变换红外光谱对紫外线防护剂进行定量和定性分析,通过脂肪酸甲酯分析对脂质进行分析。氮丰度和高氧化应激有助于紫外线防护剂的合成。本研究得出结论,紫外线暴露是诱导合成紫外线防护剂和饱和脂质生产力的有效策略。这种生物炼制方法鼓励经济和环境可持续的选择。